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Abstract. We present preliminary results of the numerical simulation
of electrocardiograms (ECG). We consider the bidomain equations to
model the electrical activity of the heart and a Laplace equation for the
torso. The ionic activity is modeled with a Mitchell-Schaeffer dynamics.
We use adaptive semi-implicit BDF schemes for the time discretization
and a Neumann-Robin domain decomposition algorithm for the space
discretization. The obtained ECGs, although not completely satisfactory,
are promising. They allow to discuss various modelling assumptions, for
example the relevance of cells heterogeneity, the fiber orientation and the
coupling conditions with the torso.

1 Introduction

We address the numerical simulation of electrocardiograms (ECG), namely the
direct problem of cardiac electrophysiology. Our basic equations are the so-called
bidomain model for the heart [4,16] coupled to a simple model for the torso.

The complexity of the electrical activity of the heart raise many modelling
issues: strong nonlinearity due to the ionic currents, stiffness due to very different
time scales, heterogeneity of cells, anisotropy due to the fibers, etc. Moreover,
the modelling of many aspects of the problem is not yet well-established. In [20],
more than 28 models of cardiac cells are reported, some of them including more
than 50 parameters. The coupling conditions between the heart and the torso
are also subject to controversy [11].

We have to face two opposite viewpoints: on the one hand, we would like to
model as accurately as possible the physical phenomena described in the litera-
ture; on the other hand, we would like to keep as low as possible the complexity
of the model, both in terms of computational effort and in terms of number of
parameters. Our purpose is to obtain ECGs, and we propose to address, with the
help of numerical simulations, what could be the “minimum requirements” of the
model to reach this goal. For example, is a bidomain model necessary? what is
the effect of the heart movement? how sensitive are the results to the anisotropy
induced by fibers or the cells heterogeneity? is it really useful to strongly cou-
ple the heart with the torso? what should be the coupling conditions? how to
handle the His bundle and the Purkinje fibers? etc. We do not address all these
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questions in this paper. The point is mainly to present preliminary results and
to draw some perspectives.

2 Modelling

We denote by ΩH the total domain occupied by the heart. In the microscopic
scale, the cardiac tissue is assumed to be composed of two distinct media:
the intracellular media, made of the cardiac cells, and the extracellular media,
composed of the remainder of the heart. After an homogenization process, the
intra- and extracellular domains are superimposed and occupy the whole domain
ΩH [16,4]. We denote by ji, je and ui, ue the intra- and extracellular densities
of current and electric potentials respectively. The homogenized equation asso-
ciated to the electrical charge conservation is:

div(j i + je) = 0, in ΩH. (2.1)

The homogenized equation governing the electrical activity of the cell membranes
is given by

Am

(
Cm

∂Vm

∂t
+ Iion(Vm, w)

)
+ div(j i) = AmIapp, in ΩH, (2.2)

where Am is a constant representing the average rate of membrane surface per
unit of volume, the function Iion represents the current due to the ionic ex-
changes, Iapp is a given stimulation current, Cm is a capacity per unit of area of
the membrane, Vm is the transmembrane potential defined by

Vm = ui − ue, (2.3)

and the vector function w is solution to a system of ordinary differential
equations:

∂w

∂t
+ g(Vm, w) = 0. (2.4)

The precise definition of g and Iion depends on the cell model. We can use a
physiological ionic model (e.g. [13] or [6]) or a phenomenological one (e.g. [7]
or [15]). In this paper, we consider the phenomenological model proposed by
Mitchell and Schaeffer [15]:

Iion(Vm, w) = − w

τin
V 2

m(1 − Vm) +
Vm

τout
, (2.5)

.

g(Vm, w) =

⎧⎪⎪⎨
⎪⎪⎩

w − 1
τopen

if Vm < Vgate,

w

τclose
if Vm > Vgate,

(2.6)

where τin, τout, τopen, τclose and Vgate are given parameters. Note that this model
is close to the model proposed in [24].
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The current densities are linked to the electric potentials through the Ohm’s
law ji = −σi∇ui, je = −σe∇ue, where σi and σe are the intra- and extracel-
lular conductivity tensors. The system of equations within the heart therefore
reads [12,17,18]:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Am

(
Cm

∂Vm

∂t
+ Iion(Vm, w)

)
− div(σi∇ui) = AmIapp, in ΩH,

div(σe∇ue) = − div(σi∇ui), in ΩH,

∂tw + g(Vm, w) = 0, in ΩH.

(2.7)

This model is often studied when the heart is isolated (cf. for example [2,3,4]).
We are interested in coupling it with a simplified model of the electrical activity
of the surrounding tissues (as done for example in [5,18] or [23]). The boundary
∂ΩH of the domain ΩH, i.e. the interface between the heart and the extracardiac
region is divided into two parts: the endocardium Γendo and the epicardium Γepi.
It is generally admitted (cf. [17,23]) that the intracellular current ji does not
propagate outside the heart. Consequently, on the heart boundary Γepi ∪ Γendo
we impose σi∇ui · n = 0. The torso domain is denoted by ΩT and the potential
in ΩT by uT . The torso is seen as a passive conductor, thus uT satisfies a Laplace
equation:

div(σT∇uT ) = 0, in ΩT, (2.8)

where σT represents the conductivity tensor of the torso. The boundary of the
torso is divided into two parts: one internal Γepi, in contact with the heart,
and Γext representing the external surface of the torso. The boundary Γext is
supposed to be insulated, thus we impose σT∇uT · nT = 0 where nT is the
outward unit normal on Γext.

On Γepi, the following conditions are generally adopted in the literature:{
ue = uT , on Γepi,

σe∇ue · n = σT∇uT · n, on Γepi.
(2.9)

They are formally obtained in [11] by an homogenization procedure. They cor-
respond to a perfect electrical coupling between the heart and the torso. Nev-
ertheless, the heart is separated from the torso by the pericardium which is a
double-walled sac containing a serous fluid. Thus, it seems reasonable to assume
the more general coupling conditions:⎧⎨

⎩
Rpσe∇ue · n = RpCp

∂(uT − ue)
∂t

+ (uT − ue), on Γepi,

σe∇ue · n = σT∇uT · n, on Γepi,

(2.10)

which takes into account a possible capacitive (Cp) and resistive (Rp) effect of
the pericardium. To the best of our knowledge, this effect is not documented in
the literature. The influence of Rp and Cp will be investigated through numerical
simulations in a forthcoming work. Of course the classical relations (2.9) can be
recovered from (2.10) by setting Rp = 0.



Towards the Numerical Simulation of Electrocardiograms 243

3 Numerical Methods

We define the open set Ω as the interior of ΩH ∪ ΩT. Eliminating the unknown
ui in the previous system using (2.3), the above problem is equivalent to finding
ue, uT, Vm and w such that (2.10)1 and (2.4) are satisfied, and

Am

∫
ΩH

(
Cm

∂Vm

∂t
+ Iion(Vm, w)

)
φ +

∫
ΩH

σi∇(Vm + ue) · ∇φ =
∫

ΩH

Iappφ,

(3.11)
∫

ΩH

(σi + σe)∇ue · ∇φ +
∫

ΩH

σi∇Vm · ∇φ +
∫

ΩT

σT∇uT · ∇φ = 0, (3.12)

for all φ ∈ H1(Ω). Note that this variational formulation takes into account
very conveniently the coupling condition (2.10)2. Under technical assumptions
on the functions Iion and g, and for Rp = 0, we have proved in [1] that this
system admits a unique solution. This system is discretized in space using the
Lagrangian P1 finite elements and in time using a semi-implicit scheme based
on the BDF (Backward Differentiation Formula) methods. The heart and torso
domains are solved iteratively with a Neumann/Robin domain decomposition
method. We denote by Δt the time step and we assume that the solution is known
until time tn. Here is the procedure used to compute (V n+1

m , un+1
e , un+1

T , wn+1).
The first step is to solve the ionic current, namely the equation (2.4) which is

usually very stiff. We chose to use the cvode solver1 which uses adaptivity, both in
time and in order, and solves the implicit part of the equations with a Newton algo-
rithm. For practical reason, it is convenient to uncouple this step from the solution
of the bidomain equation. To this purpose, we extrapolate the unknown Vm. More
precisely, wn+1 is obtained by wn+1 =

∑p
j=0 aj,pw

n−j −Δtb−1,pg(Ṽm
n+1

, wn+1),

where Ṽm
n+1

=
∑q

j=0 αj,qV
n−j
m is the extrapolation of order q of the previously

computed Vm, q being the order in time of the scheme used to compute Vm (see
below), and αj,q, aj,p and b−1,p are the constants of the BDF methods [19].

The second step is to solve the bidomain-torso problem. We use a domain de-
composition algorithm: assuming that un+1,k

T is given, we compute V n+1,k+1
m and

un+1,k+1
e solving a Neumann problem in ΩH with a q-order BDF time scheme:

for all φ in the basis of the finite element space⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Am

∫
ΩH

CmV n+1,k+1
m φ + Δtb−1,q

∫
ΩH

σi∇(V n+1,k+1
m + un+1,k+1

e ) · ∇φ =

Am

∫
ΩH

(
Cm

q∑
j=0

aj,qV
n−j
m + Δtb−1,qIion(Ṽm

n+1
, wn+1)

)
φ + Δtb−1,q

∫
ΩH

Iappφ,

∫
ΩH

(σi + σe)∇un+1,k+1
e · ∇φ

+
∫

ΩH

σi∇V n+1,k+1
m · ∇φ =

∫
Γepi

σT∇un+1,k
T · nTφ.

(3.13)
1 Sundials library, http://www.llnl.gov/casc/sundials/
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Next, the potential un+1,k+1
e being known, we compute un+1

T solving the fol-
lowing problem in the torso ΩT:

b−1,q

∫
ΩT

σn+1
T ∇un+1,k+1

T · ∇φ +
∫

Γepi

(
b−1,q

Rp
+

Cp

Δt

)
un+1,k+1

T φ

=
∫

Γepi

(
b−1,q

Rp
+

Cp

Δt

)
un+1,k+1

e φ +
Cp

Δt

∫
Γepi

q∑
j=0

aj,q(u
n−j
T − un−j

e )φ.

(3.14)

To enforce a “strong coupling” (namely the transmission conditions (2.10)), we
have to iterate in k between (3.13) and (3.14) until convergence, at each time
step. We can also perform a “weak coupling” by performing only one iteration in
k, or even by replacing condition (2.9)2 by σe∇ue · n = 0. This approximation
will be considered in § 4.2.

4 Numerical Results

The torso geometry includes the lungs and the skeleton2 (see Fig. 1). The heart
geometry is simplified – based on intersecting ellipsoids – so that the fibers
orientation can be given in terms of analytical functions (see Fig. 1). We refer
to [22] for the details of the geometrical definition of the heart. Note that this
simplified geometry only includes the ventricles. We therefore cannot simulate
P-waves. The finite element meshes of the heart (61 512 tetrahedra) and the
torso (311 117 tetrahedra) have been realized with YAMS [8] and GHS3D[9,10].

The conductivity tensors σi and σe are given by σi,e(x) = σt
i,eI + (σl

i,e −
σt

i,e)a(x) ⊗ a(x), where a(x) is a unit vector parallel to the local fiber direction
(Fig. 1, Left) and σl

i,e and σt
i,e are respectively the conductivity

coefficients in the intra- and extra-cellular media measured along the fibers di-
rection and in the transverse direction. Experiments show that σl

i,e and σt
i,e

have different values, which means that intra- and extra-cellular media are
anisotropic. We have taken into account this anisotropy. It is also established
that they are spatially dependent. In particular, the conductivity is larger in
the His bundle and the Purkinje fibers. Nevertheless, this space dependence
is not considered in our simulations. The fact that the Purkinje fibers con-
ducts very quickly the electrical signal is roughly modeled by taking an uni-
form initial stimulation on the endocardium. All the numerical experiments
have been obtained with a very small value of Rp. This amounts to consid-
ering the standard transmission conditions (2.9). In the following section, the
ECG are plotted according to the standard 12-leads ECG definition (see [14],
for instance): DI = uT(L)−uT(R), DII = uT(F )−uT(R), DIII = uT(F )−uT(L),
aVR = 3

2 (uT(R) − uW ), aVL = 3
2 (uT(L) − uW ), aVF = 3

2 (uT(F ) − uW ), Vi =
uT(Vi) − uW , for i = 1, .., 6, where the points L, R, F , (Vi)i=1..6 are indicated
in Fig. 1, and where uW = (uT(L) + uT(R) + uT(F ))/3.

2 This geometry comes from Zygote Media Group, Inc. http://www.zygote.com/

http://www.zygote.com/
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R L
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V1 V2

V3 V4V5 V6

Fig. 1. Computational domains: torso and ECG leads (Left), heart with fibers (Right)

4.1 A Reference Simulation
We start from a “reference simulation”, in which we take into account the
anisotropy (σl

i,e �= σt
i,e) and a cells heterogeneity across the wall of the left

ventricule (see [21] for instance). This heterogeneity is achieved by taking a
coefficient τclose in (2.6) varying across the thickness direction. The initial stim-
ulation is given by a volume current which acts on the whole endocardium (both
left and right parts). The simulated ECG is reported in Fig. 2. Compared to a
real ECG, we can notice that the waves have a correct orientation in each of
the 12 leads. Some points have still to be improved, in particular the amplitude
of the T-wave and the length of the QRS-complex. In the sequel, we play with
various modelling assumptions and compare the results with this solution.

4.2 Weak Coupling with Torso

In order to reduce the computational cost of the heart-torso coupling, we can
relax the coupling condition (2.9) to

ue = uT , and σe∇ue · n = 0, on Γepi. (4.15)

The resulting system (2.7) and (4.15)2 can be solved independently of the torso.
Then, the ECG signals can be recovered in a second step by solving (2.8) with
(4.15)1. The results are reported in Fig. 3 (for the sake of conciseness we only
report the DI, aVr, V1 and V4 leads). A comparison with Fig. 2 shows that the
amplitude of the waves is slightly larger with the weak coupling. Nevertheless,
the solutions are qualitatively similar. The following experiments will be done
with (4.15).
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Fig. 2. Reference simulation: 12-leads ECG signals obtained by a strong coupling with
the torso, including anisotropy and APD inhomogeneity. The units on the x-axis is
milliseconds. The normalization on the y-axis is arbitrary, but the same on all the
results of this paper.
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Fig. 3. Results obtained with a weak coupling with the torso (compare with Fig. 2)

4.3 Impact of Fibers

We now investigate the influence of the anisotropy of the conductivity tensors
σi, σe on the ECG signals.

We consider the numerical experiment described in §4.1 but now we consider
isotropic conductivities by setting σl

e = σt
e, σl

i = σt
i . Fig. 4 shows the corre-

sponding ECG signals. We observe that the QRS-complex has a larger duration
than in the anisotropic case (Fig. 2, Top). In addition, the T-wave is inverted
in the the first Einthoven limb lead. The influence of anisotropy is much more
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Fig. 4. ECG signals: isotropic conductivities
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Fig. 5. Anisotropic (top) and isotropic (bottom) conductivities in a “pathological” case
(right bundle-branch block). The sensitivity to the anisotropy is striking.
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Fig. 6. ECG signals: with an homogeneous action potential duration the T-wave has
the wrong sign on the first lead (compare with Figure 2)

striking when dealing with pathological stimulations. For instance, in Fig. 5 we
have reported, the simulated ECG signals for a pathological stimulation (a right
bundle-branch block) with anisotropic (top) and isotropic (bottom) conductivi-
ties. As expected, both results show a longer QRS complex compared to Fig. 2.
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4.4 Impact of Cell Heterogeneity

We now investigate the role of the action potential duration (APD) heterogeneity
on the ECG signals. For the sake of simplicity we restrict ourselves to a trans-
mural heterogeneity, playing with the τclose coefficient as mentioned in § 4.1.

In Fig. 6 we have depicted the ECG signals corresponding to an homogeneous
APD (τclose constant in (2.6)). In the first lead (Fig. 6, Left), we observe that
the T-wave is inverted compared to the reference case (Fig. 2, Left-Top) and to
what is usually observed in real ECGs.

5 Conclusion

We have presented a mathematical model for the electrical activity of the heart
coupled to the torso. We started from a reference numerical simulation based
on the Mitchell-Schaeffer dynamics, where we took into account the heart-torso
coupling, the anisotropy due to the fibers, a simple heterogeneity along the left
ventricle wall thickness. The resulting ECG is acceptable on the 12 standard
leads. Then, we have shown that cell homogeneity yields inverted T-wave. We
have also shown that a strong coupling with the torso has only a small influence
on the ECG whereas anisotropy due to fibers orientation has to be taken into
account in general. Further computations have to be carried out to confirm
these results and to assess other points, like for example the relevance of the
transmission conditions (2.10).
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