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Abstract
In the first part of this paper, we prove Hölder and logarithmic stability estimates
associated with the unique continuation property for the Stokes system. The
proof of these results is based on local Carleman inequalities. In the second
part, these estimates on the fluid velocity and on the fluid pressure are applied to
solve an inverse problem: we consider the Stokes system completed with mixed
Neumann and Robin boundary conditions, and we want to recover the Robin
coefficient (and obtain the stability estimate for it) from measurements available
on a part of the boundary where the Neumann conditions are prescribed.
For this identification parameter problem, we obtain a logarithmic stability
estimate under the assumption that the velocity of a given reference solution
stays far from zero on a part of the boundary where the Robin conditions are
prescribed.

1. Introduction

We are interested in stability estimates quantifying unique continuation properties for the
Stokes system in a bounded connected open domain � ⊂ R

d , d ∈ N
∗, as well as their

consequences for the stability of a Robin coefficient with respect to measurements available
on a part of the boundary. In this work, we will consider the Stokes system:{

−�u + ∇p = 0, in �,

div u = 0, in �,
(1.1)

where u and p denote the fluid velocity and the fluid pressure, respectively. For such a system,
and more generally for the unsteady Stokes equations with a non-smooth potential, Fabre and
Lebeau proved in [18] a unique continuation result. In the particular case of the steady problem
(1.1), their result is the following:
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Theorem 1.1. Let ω be a nonempty open set in � and (u, p) ∈ H1
loc(�)d × L2

loc(�) be a weak
solution of system (1.1) satisfying u = 0 in ω. Then u = 0 and p is constant in �.

We easily deduce from the previous theorem the following result (see [7]).

Corollary 1.2. Let γ be a nonempty open set included in ∂� and (u, p) ∈ H1(�)d × L2(�)

be a solution of system (1.1) satisfying u = 0 and ∂u
∂n − pn = 0 on γ . Then u = 0 and p = 0

in �.

One of our purposes is to obtain stability estimates in � which quantify these unique
continuation results and which are valid for any regular enough solution of (1.1) without extra
boundary conditions. More precisely, we obtain two kinds of inequalities. The first inequality
stated in the following theorem is a local stability estimate of the Hölder type.

Theorem 1.3. Let ω be a nonempty open set and K be a compact set, both included in �.
Then, there exist c > 0 and 0 < β < 1, such that for all (u, p) ∈ H1(�)d × L2(�) solutions
of (1.1), we have

‖u‖H1(K)d + ‖p‖L2(K) � c(‖u‖H1(ω)d + ‖p‖L2(ω))
β (‖u‖H1(�)d + ‖p‖L2(�))

1−β. (1.2)

Then, we obtain two global logarithmic estimates. In the first one, we estimate the (u, p)

solution of (1.1) in the H1-norm on the whole domain with respect to the L2-norm of (u|�, p|�)

and
(

∂u
∂n |�,

∂ p
∂n |�

)
, where � is a part of the boundary of �. In the second one, we obtain an

estimate of the (u, p) solution of (1.1) in the H1-norm on the whole domain with respect to
the H1-norm of u and p in an open set ω ⊂ �. To be more specific, we prove the following
theorem.

Theorem 1.4. Assume that � is of class C∞. Let 0 < ν � 1
2 . Let � be a nonempty open subset

of the boundary of � and ω be a nonempty open set included in �. Then, there exists d0 > 0,

such that for all β ∈ (
0, 1

2 + ν
)
, for all d̃ > d0, there exists c > 0, such that we have

‖u‖H1(�)d + ‖p‖H1(�) � c
‖u‖

H
3
2 +ν

(�)d
+ ‖p‖

H
3
2 +ν

(�)(
ln

(
d̃

‖u‖
H

3
2 +ν

(�)d
+‖p‖

H
3
2 +ν

(�)

‖u‖L2 (�)d +‖p‖L2 (�)
+‖ ∂u

∂n ‖L2 (�)d +‖ ∂ p
∂n ‖L2 (�)

))β
(1.3)

and

‖u‖H1(�)d + ‖p‖H1(�) � c
‖u‖

H
3
2 +ν

(�)d
+ ‖p‖

H
3
2 +ν

(�)(
ln

(
d̃

‖u‖
H

3
2 +ν

(�)d
+‖p‖

H
3
2 +ν

(�)

‖u‖H1 (ω)d +‖p‖H1 (ω)

))β
, (1.4)

for all couple (u, p) ∈ H
3
2 +ν (�)d × H

3
2 +ν (�) solutions of (1.1).

From the point of view of the unique continuation results stated previously, these estimates
are not optimal. Indeed, one can note that our stability estimates require more measurements
than the Fabre–Lebeau unique continuation result. For instance, in theorem 1.1, the unique
continuation result only requires the velocity to be equal to zero, whereas in inequality (1.2),
we need information on u and p on ω. Moreover, note that, in (1.3), the constraint ∂u

∂n − pn
which appears in corollary 1.2 is divided into two terms: ∂u

∂n and pn, and that there is also
an additional term, the normal derivative of p. Nevertheless, even if these estimates are not
optimal, they are satisfied without prescribing boundary conditions on the solution and have
the advantage of providing an upper bound both on u and p. These two points will be crucial
in solving the inverse problem of identifying a Robin coefficient defined on some part of the
boundary from measurements available on another part of the boundary, where one needs to
estimate both u and p. For an optimal three-balls inequality which only involves the L2-norm
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of the velocity u, we refer to [24]. Note yet that by applying theorem 1.3 or its quantification
obtained in [24], p is only known to be a constant. The result obtained in [24] would not enable
us to deal with the inverse problem we are interested in.

As in [25], where quantitative estimates on the unique continuation property for the
Laplace equation are established, we use two kinds of local Carleman inequalities to prove
theorems 1.3 and 1.4, one near the boundary and one in the interior of the open set �. In each
case, the method consists in applying the Carleman estimate to u and p simultaneously, by
using the fact that �u = ∇p and �p = div (�u) = 0, in order to free ourselves from terms
on the right-hand side of the inequalities. It is interesting to note that if we directly apply the
estimate coming from [25] to the (u, p) solution of the Stokes equations, and if we apply the
same reasoning as explained above, we obtain ∇p in the L2-norm over all � on the right-hand
side of the inequality which we cannot discard. Consequently, we cannot prove theorems 1.3
and 1.4 without going deeply into the heart of the proof. Note that the proof requires the
domain to be C∞. One could surely consider less regular domains as in [9] where Lipschitz
domains (but smooth solutions) are considered for the Laplacian problem. Note furthermore
that this C∞ regularity is not so restrictive since we will only need the domain to be locally
C∞ in the parameter identification result (see theorem 1.5).

The second main objective of this paper is to apply the previous stability estimates to some
parameter identification problem. We consider the Stokes equations with mixed Neumann and
Robin boundary conditions:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−�u + ∇p = 0, in �

div u = 0, in �,
∂u

∂n
− pn = g, on �0,

∂u

∂n
− pn + qu = 0, on �out.

(1.5)

Our aim is to derive stability estimates for the inverse problem of determining the Robin
coefficient from the measurements of u and p available on a part of �0. We assume that

�0 ∪ �out = ∂� and �0 ∩ �out = ∅.

These assumptions enable us to obtain global regularity on the solution of system (1.5), despite
the mixed boundary conditions. As detailed in remark 3.7, under certain conditions, we can
relax this assumption.

Let us emphasize that such kinds of systems naturally appear in the modeling of biological
problems such as, for example, blood flow in the cardiovascular system (see [26] and [30]) or
airflow in the respiratory tract (see [4]). For an introduction to the modeling of the airflow in
the lungs and to the different boundary conditions that may be prescribed, we refer to [15].
The fact that no boundary condition is necessary in our previous stability estimates allows
us to consider models that are close to applications. The part of the boundary �0 represents
a physical boundary on which measurements are available, and �out represents an artificial
boundary on which Robin boundary conditions (or mixed boundary conditions involving the
fluid stress tensor and its flux at the outlet) are prescribed, because no in vivo measurements
of the velocity u and the pressure p are available. In this case, the Robin coefficient represents
in a reduced way the downstream part of the arterial or bronchial tree.

For this problem, we will prove the following logarithmic estimate.

Theorem 1.5. Let k ∈ N
∗ be such that k+2 > d

2 , and s ∈ R be such that s > d−1
2 and s � 1

2 +k.
Let � ⊆ �0 be a nonempty open subset of the boundary of �. We assume that � and �out are
of class C∞. Let α > 0, M1 > 0, M2 > 0. We assume that (g, q j) ∈ H

1
2 +k(�0)

d × Hs(�out),

3
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for j = 1, 2, are such that g is non-identically zero, ‖g‖
H

1
2 +k

(�0)d
� M1, q j � α on �out and

‖q j‖Hs(�out) � M2. We denote by (u j, p j) the solution of system (1.5) with q = q j, for j = 1, 2.
Let K be a compact subset of {x ∈ �out | u1 �= 0} and m > 0 be such that |u1| � m on K.

Then, for all β ∈ (0, 1), there exist C(α, M1, M2) > 0 and C1(α, M1, M2) > 0, such that

‖q1 − q2‖L2(K) � 1

m

C(α, M1, M2)(
ln

(
C1(α,M1,M2 )

‖u1−u2‖L2 (�)d +‖p1−p2‖L2 (�)
+‖ ∂ p1

∂n − ∂ p2
∂n ‖L2 (�)

)) 3
4 β

. (1.6)

Let us note that we obtain an estimate of the Robin parameters on a subset of �out where
the velocity u1 stays far from 0. This later assumption can be discarded in very specific cases
(see remark 4.9 in [7]) and is generally verified numerically in the considered applications.

Stability estimates for the Robin coefficient have been widely studied for the Laplace
equation (see [2, 5, 10–12, 29]). Concerning the Stokes equations, we have obtained in [7]
a logarithmic stability estimate valid in dimension 2 for the steady problem as well as the
unsteady one, under the assumption that the velocity of a given reference solution stays far
from 0 on a part of the boundary where Robin conditions are prescribed. An improvement
of this paper is that the stability estimate is valid in any space dimension. Moreover, if we
compare the result stated in theorem 1.5 in the particular case d = 2 with the previous result
in [7], we can note that we need less regularity on the solution (u, p) in theorem 1.5. To be
more precise, in [7], the solution (u, p) has to belong to H4(�)d × H3(�), whereas here, it
is sufficient to assume that (u, p) belongs to H3(�)d × H2(�). Another improvement lies in
the fact that the power of the logarithm involved in the stability estimate (1.6) of theorem 1.5
is better than the one obtained in [7]: the power is equal to 3β/4 here, whereas it was equal to
β/2 in [7] for all β ∈ (0, 1).

Let us describe the content of the paper. In section 2, we are concerned with the
stability estimates associated with the unique continuation property, and we first state two
theorems, namely theorems 2.1 and 2.3, which are equivalent to theorems 1.3 and 1.4,
respectively. Then, we state three propositions, namely propositions 2.4, 2.5 and 2.6, which
are intermediate results illustrating how information spreads from a part of the boundary to
another. These three propositions will allow us to prove theorems 2.1 and 2.3. Proposition 2.4
is based on a local Carleman estimate for the Laplace equation inside the domain, whereas
propositions 2.5 and 2.6 are based on a local Carleman estimate near the boundary. The proofs
of these propositions are given in subsections 2.1 and 2.2. We conclude the proofs of theorems
2.1 and 2.3 in subsection 2.3. Finally, in section 3, we are concerned with the inverse problem
presented above and we give a proof to theorem 1.5.

If not specified otherwise, c is a generic constant, whose value may change and which
only depends on the geometry of the open set �. Moreover, we denote indifferently by | | a
norm on R

n for any n � 1. For x = (x1, . . . , xd ) ∈ R
d , we denote by x′ ∈ R

d−1 the d − 1 first
coordinates of x. We will also use the following notation: R

d
+ = {x = (x′, xd ) ∈ R

d | xd � 0}.

2. Stability estimates

Let us first state two theorems, theorem 2.1 and theorem 2.3, which are equivalent to
theorem 1.3 and theorem 1.4, respectively.

Theorem 2.1. Let ω be a nonempty open set and K be a compact set, both included in �.
Then, there exist c > 0 and s > 0 such that for all (u, p) ∈ H1(�)d ×L2(�) solutions of (1.1)
and for all ε > 0, we have

‖u‖H1(K)d + ‖p‖L2(K) � c

ε
(‖u‖H1(ω)d + ‖p‖L2(ω)) + εs(‖u‖H1(�)d + ‖p‖L2(�)). (2.1)

4
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This theorem and theorem 1.3 are equivalent. The fact that theorem 2.1 implies
theorem 1.3 is a direct consequence of lemma 2.2 below with

A = c(‖u‖H1(ω)d + ‖p‖L2(ω)), B = ‖u‖H1(�)d + ‖p‖L2(�), C1 = 1, C2 = s,

γ = −lnε and D = ‖u‖H1(K)d + ‖p‖L2(K).

Moreover, the fact that theorem 1.3 implies theorem 2.1 is a consequence of the Young
inequality by writing

c(‖u‖H1(ω)d + ‖p‖L2(ω))
β (‖u‖H1(�)d + ‖p‖L2(�))

1−β

=
( c

ε
(‖u‖H1(ω)d + ‖p‖L2(ω))

)β

(ε
β

1−β (‖u‖H1(�)d + ‖p‖L2(�)))
1−β.

Lemma 2.2. Let A > 0, B > 0, C1 > 0, C2 > 0 and D > 0. We assume that there exist c0 > 0
and γ1 > 0 such that D � c0B, and for all γ � γ1,

D � A eC1γ + B e−C2γ . (2.2)

Then, there exists C > 0 such that

D � CA
C2

C1+C2 B
C1

C1+C2 .

Lemma 2.2 will be used repeatedly throughout this paper. We refer to [28] for a proof of
this result. Next, we introduce a result which is equivalent to theorem 1.4.

Theorem 2.3. Assume that � is of class C∞. Let 0 < ν � 1
2 , � be a nonempty open subset of

the boundary of � and ω be a nonempty open set included in �. Then, for all β ∈ (
0, 1

2 + ν
)
,

there exists c > 0 such that for all ε > 0, we have

‖u‖H1(�)d + ‖p‖H1(�) � e
c
ε

(
‖u‖L2(�)d + ‖p‖L2(�) +

∥∥∥∥∂u

∂n

∥∥∥∥
L2(�)d

+
∥∥∥∥∂ p

∂n

∥∥∥∥
L2(�)

)

+ εβ (‖u‖
H

3
2 +ν

(�)d
+ ‖p‖

H
3
2 +ν

(�)
) (2.3)

and

‖u‖H1(�)d + ‖p‖H1(�) � e
c
ε (‖u‖H1(ω)d + ‖p‖H1(ω)) + εβ (‖u‖

H
3
2 +ν

(�)d
+ ‖p‖

H
3
2 +ν

(�)
) (2.4)

for all couple (u, p) ∈ H
3
2 +ν (�)d × H

3
2 +ν (�) solutions of (1.1).

This theorem and theorem 1.4 are equivalent. This relies on classical arguments which
can be found in [15] and [25].

We now state three propositions, propositions 2.4, 2.5 and 2.6, which will allow us to
prove theorems 2.1 and 2.3. The first proposition allows us to transmit information from an
open set to any relatively compact open set in �.

Proposition 2.4. Let ω be a nonempty open set included in � and let ω̂ be a relatively
compact open set in �. Then, there exist c, s > 0 such that for all ε > 0, for all
(u, p) ∈ H1(�)d × H1(�) solutions of (1.1),

‖u‖H1(ω̂)d + ‖p‖H1(ω̂) � c

ε
(‖u‖H1(ω)d + ‖p‖H1(ω)) + εs(‖u‖H1(�)d + ‖p‖H1(�)). (2.5)

The second proposition allows us to transmit information from a relatively compact open
set in � to a neighborhood of the boundary.

5
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Proposition 2.5. Assume that � is of class C∞. Let 0 < ν � 1
2 , x0 ∈ ∂� and let ω be an open

set in �. There exists a neighborhood ω̂ of x0 such that for all β ∈ (
0, 1

2 + ν
)
, there exists

c > 0, such that for all ε > 0, for all (u, p) ∈ H
3
2 +ν (�)d × H

3
2 +ν (�) solutions of (1.1),

‖u‖H1(ω̂∩�)d + ‖p‖H1(ω̂∩�) � e
c
ε (‖u‖H1(ω)d + ‖p‖H1(ω)) + εβ (‖u‖

H
3
2 +ν

(�)d
+ ‖p‖

H
3
2 +ν

(�)
).

(2.6)

Finally, the third proposition allows us to transmit information from a part of the boundary
of � to a relatively compact open set in �.

Proposition 2.6. Assume that � is of class C∞. Let 0 < ν � 1
2 , � be a nonempty open subset

of the boundary of � and ω̂ be a relatively compact open set in �. Then, there exist c, s > 0
such that for all ε > 0, for all (u, p) ∈ H

3
2 +ν (�)d × H

3
2 +ν (�) solutions of (1.1),

‖u‖H1(ω̂)d + ‖p‖H1(ω̂) � c

ε

(
‖u‖H1(�)d + ‖p‖H1(�) +

∥∥∥∥∂u

∂n

∥∥∥∥
L2(�)d

+
∥∥∥∥∂ p

∂n

∥∥∥∥
L2(�)

)

+ εs(‖u‖H1(�)d + ‖p‖H1(�)).

Remark 2.7. The logarithmic nature of inequalities (2.3) and (2.4) comes from
proposition 2.5 where an exponential appears in front of the first term of the right-hand side,
whereas the estimates in propositions 2.4 and 2.6 lead to Hölder estimates, as a consequence
of lemma 2.2.

Theorem 2.3 will be a consequence of propositions 2.4, 2.5 and 2.6, whereas
theorem 2.1 will directly come from proposition 2.4 and the use of the Caccioppoli inequality.
The next subsection is dedicated to the proof of proposition 2.4. In the second subsection, we
prove propositions 2.5 and 2.6. Finally, in the last subsection, we conclude with the proofs of
theorems 2.3 and 2.1.

2.1. Estimates on relatively compact open sets: proof of proposition 2.4

Notation 2.8. Let P be a second-order differential operator defined in an open set M and
χ ∈ C∞

0 (M), such that χ = 1 in a subdomain  of M. Then, P(χy) = χPy + [P, χ ]y with
[P, χ ] being a first-order operator with support in M\.

Notation 2.9. Let q ∈ R
d, δ > 0 and 0 < α < α′. We denote by Aδ

q(α, α′) the annulus delimited
by the area between two concentric circles of center q and radii αδ and α′δ, respectively:

Aδ
q(α, α′) = {x ∈ R

d |αδ < |x − q| < α′δ}.
Lemma 2.10. Let q ∈ R

d, δ > 0 and (αi)i=1,...,5 ∈ R
5 be such that 0 < α1 < α2 < α3 < α4 <

α5. Then, there exist c > 0, h1 > 0, c1 > 0 and c2 > 0, such that for all 0 < h < h1, and for
all function (u, p) ∈ H1(B(q, α5δ))d × H1(B(q, α5δ)) solutions of{−�u + ∇p = 0, in B(q, α5δ),

div u = 0, in B(q, α5δ),
(2.7)

the following inequality is satisfied:

‖u‖H1(Aδ
q(α2,α3 ))d + ‖p‖H1(Aδ

q(α2,α3 )) � c(ec1/h(‖u‖H1(B(q,α2δ))d + ‖p‖H1(B(q,α2δ)))

+ e−c2/h(‖u‖H1(B(q,α5δ))d + ‖p‖H1(B(q,α5δ)))), (2.8)

with c1 = g(α1δ) − g(α3δ) > 0 and c2 = g(α3δ) − g(α4δ) > 0, where g(x) = e−λx2
and λ is

large enough.

6
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Proof of lemma 2.10. Let α0 and α6 be such that 0 < α0 < α1 and α5 < α6. We denote by

U0 = Aδ
q(α0, α6), K0 = Aδ

q(α1, α5).

Let χ ∈ C∞
c (B(q, α6δ)) such that 0 � χ � 1, χ = 1 on  = Aδ

q(α2, α4) and χ = 0 in the
exterior of K0. We are going to apply the local Carleman estimate inside the domain for the
Laplace equation (see [21]) on U0 and with φ(x) = e−λ|x−q|2 successively to χu and χ p, where
(u, p) is the solution of (2.7): there exist c > 0 and h1 > 0 such that for all h ∈ (0, h1) and for
all function (u, p) ∈ H1(B(q, α5δ))d × H1(B(q, α5δ)) solutions of (2.7), we have∫



|u(x)|2 e2φ(x)/h dx + h2
∫



|∇u(x)|2 e2φ(x)/h dx

� ch3
∫

K0

|χ∇p(x)|2 e2φ(x)/h dx + ch3
∫

K0\
|[�,χ ]u(x)|2 e2φ(x)/h dx, (2.9)

and since �p = div(�u) = 0,∫


|p(x)|2 e2φ(x)/h dx + h2
∫

K0

|χ∇p(x)|2 e2φ(x)/h dx

� ch3
∫

K0\
|[�,χ ]p(x)|2 e2φ(x)/h dx + ch2

∫
K0\

|p(x)|2 e2φ(x)/h dx. (2.10)

We add up inequalities (2.9) and (2.10): there exists h1 > 0, such that for all h ∈ (0, h1),

eg(α3δ)/h
∫

Aδ
q(α2,α3 )

(|u(x)|2 + |p(x)|2 + h2(|∇u(x)|2 + |∇p(x)|2) dx

� ch2 eg(α1δ)/h
∫

Aδ
q(α1,α2 )

|[�,χ ]u(x)|2 + |[�,χ ]p(x)|2 + |p(x)|2 dx

+ ch2 eg(α4δ)/h
∫

Aδ
q(α4,α5 )

|[�,χ ]u(x)|2 + |[�,χ ]p(x)|2 + |p(x)|2 dx.

By dividing the previous inequality by h2, we obtain the desired result. �

Let us introduce the notion of a δ-sequence of balls between two points.

Definition 2.11. Let δ > 0 and (x0, x) be two points in �. We say that (B(q j, δ)) j=0,...,N is a
δ-sequence of balls between x0 and x if⎧⎪⎪⎨

⎪⎪⎩
q0 = x0,

x ∈ B(qN, δ),

B(q j+1, δ) ⊂ B(q j, 2δ) for j = 0, . . . , N − 1,

B(qj, 3δ) ⊂ �.

Lemma 2.12. Let x0 and x in �. There exists δ0 > 0 such that for all 0 < δ < δ0, there exists
a δ-sequence of balls between x0 and x.

Proof of lemma 2.12. We refer to [27] for a proof of this lemma. Let us just mention that
in [27], it is asserted that x ∈ B(qN, 2δ), but on looking carefully at the proof, we see that
x ∈ B(qN, δ). �

We are now able to prove proposition 2.4.

Proof of proposition 2.4. Let x0 ∈ ω and r0 > 0 be such that B(x0, r0) ⊂ ω. For all x ∈ ω̂,
there exists, thanks to lemma 2.12, a δx-sequence of balls

(
B
(
qx

j, δx
))

j=0,...,Nx
between x0 and

x. Remark that we can assume that δx < r0 for all x ∈ ω̂. The compact ω̂ is included in

7
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x∈ω̂

B
(
qx

Nx
, δx

)
; thus, we can extract a finite subcover: there exist κ ∈ N

∗ and (x j) j=1,...,κ ∈ ω̂

such that

ω̂ ⊂
⋃

j=1,...,κ

B
(
q j

Nj
, δ j

) ⊂
⋃

j=1,...,κ

B
(
q j

Nj
, δ

)
, (2.11)

where we have denoted Nj = Nxj , δ j = δx j , q j
i = q

xj

i for j = 1, . . . , κ, i = 0, . . . , Nj and where
δ = max j=1,...,κ δ j. Remark that we can assume that Nj = N for all j = 1, . . . , κ (if necessary,
we consider the same ball several times). Then, by construction, to prove (2.5), it is sufficient
to show that there exist c, s > 0 such that for all j = 1, . . . , κ , for all i = 0, . . . , N − 1, for
all ε > 0 and for all (u, p) ∈ H1(�)d × H1(�) solutions of (1.1),

‖u‖H1(B(q j
i+1,δ))d + ‖p‖H1(B(q j

i+1,δ))
� c

ε
(‖u‖H1(B(q j

i ,δ))d + ‖p‖H1(B(q j
i ,δ))

)

+ εs(‖u‖H1(�)d + ‖p‖H1(�)). (2.12)

To prove (2.12), it is sufficient, thanks to the definition of the δ-sequence of balls, to prove
that there exist c, s > 0 such that for all j = 1, . . . , κ , for all i = 0, . . . , N − 1, for all ε > 0
and for all (u, p) ∈ H1(�)d × H1(�) solutions of (1.1),

‖u‖H1(B(q j
i ,2δ))d + ‖p‖H1(B(q j

i ,2δ))
� c

ε
(‖u‖H1(B(q j

i ,δ))d + ‖p‖H1(B(q j
i ,δ))

)

+ εs
(‖u‖H1(�)d + ‖p‖H1(�)

)
. (2.13)

Let us emphasize that, thanks to lemma 2.12, we can choose δ > 0 in (2.11) to be small
enough, such that B

(
q j

i , 5δ
) ⊂ � for all j = 1, . . . , κ and i = 0, . . . , N − 1 (it is sufficient to

take δ � 3δ0/5).
Let j ∈ {1, . . . , κ} and i ∈ {0, . . . , N}. We are going to apply lemma 2.10 with q = q j

i ,
α1 = 1

4 , α2 = 1
2 , α3 = 2, α4 = 9

4 , α5 = 5
2 . We find that there exist c > 0, h1 > 0,

c1 = g(δ/4) − g(2δ) > 0 and c2 = g(2δ) − g(9δ/4) > 0, such that for all h ∈ (0, h1) and for
all function (u, p) ∈ H1

(
B
(
q j

i , 5δ/2
))d × H1

(
B
(
q j

i , 5δ/2
))

solutions of (2.7), we have

‖u‖H1(Aδ

q
j
i

( 1
2 ,2))d + ‖p‖H1(Aδ

q
j
i

( 1
2 ,2)) � c(ec1/h(‖u‖H1(B(q j

i ,δ/2))d + ‖p‖H1(B(q j
i ,δ/2))

)

+ e−c2/h(‖u‖H1(B(q j
i ,5δ/2))d + ‖p‖H1(B(q j

i ,5δ/2))
)). (2.14)

Since B(q j
i , 5δ/2) ⊂ �, we obtain

‖u‖H1(B(q j
i ,2δ))d + ‖p‖H1(B(q j

i ,2δ))

� c(ec1/h(‖u‖H1(B(q j
i ,δ))d + ‖p‖H1(B(q j

i ,δ))
) + e−c2/h(‖u‖H1(�)d + ‖p‖H1(�))).

(2.15)

Let us consider ε = e−c1/h. We obtain that there exist c > 0, s = c2
c1

> 0, such that for all
0 < ε < ε1 = e−c1/h1 , for all (u, p) ∈ H1(�)d × H1(�) solutions of (1.1), we have

‖u‖H1(B(q j
i ,2δ))d + ‖p‖H1(B(q j

i ,2δ))

� c

(
1

ε
(‖u‖H1(B(q j

i ,δ))d + ‖p‖H1(B(q j
i ,δ))

) + εs(‖u‖H1(�)d + ‖p‖H1(�))

)
.

Since H1(�) ↪→ H1(B(q j
i , 2δ)), this inequality is still valid for ε � ε1. Thus, we obtain

inequality (2.5). �

Remark 2.13. Let β > 0. If we apply inequality (2.5) with ε = ε′β/s and use the fact that
(1/ε′)β/s � ec/ε′

, we note that inequality (2.5) of proposition 2.4 readily implies the same
kind of inequality as (2.6) with an exponential weight:{

∀ β > 0, ∃c > 0,∀ ε > 0, ∀ (u, p) ∈ H1(�)d × H1(�) solutions of (1.1),

‖u‖H1(ω̂)d + ‖p‖H1(ω̂) � e
c
ε (‖u‖H1(ω)d + ‖p‖H1(ω)) + εβ (‖u‖H1(�)d + ‖p‖H1(�)).

8
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2.2. Estimates near the boundary: proof of Propositions 2.5 and 2.6

Notation 2.14. Let R0 � 0, K = {
x ∈ R

d
+

∣∣ |x| � R0
}
, � = {x ∈ ∂K | xd = 0} and S = ∂K\�.

We denote by H
3
2 +ν

0,S (K) the restriction to the set K of functions in H
3
2 +ν

0 (B(0, R0)).

Lemma 2.15. Let 0 < ν � 1
2 , 0 < r0 < R0, K = {

x ∈ R
d
+

∣∣ |x| � R0
}
, ( f , g) ∈

L2(K)d × L2(K), B ∈ GLd (C∞(K)) and P be a second-order differential operator whose
coefficients are C∞ in a neighborhood of K, defined by P(x, ∂x) = −∂2

xd
+ R(x, 1

i ∂x′ ). Let us
denote by r(x, ξ ′) the principal symbol of R. We assume that r(x, ξ ′) ∈ R and that there exists
a constant c > 0 such that for all (x, ξ ′) ∈ K × R

d−1, we have r(x, ξ ′) � c|ξ ′|2.
We denote by K(r, r′) = {x ∈ K | r < xd < r′} for 0 < r < r′ < R0. Then, for all

β ∈ (
0, 1

2 + ν
)
, there exists c > 0 such that for all ε > 0, the following inequality holds:

‖v‖H1(K(0,r0 ))d + ‖q‖H1(K(0,r0 ))

� e
c
ε (‖v‖H1(K(r0,R0 ))d + ‖q‖H1(K(r0,R0 )) + ‖ f ‖L2(K)d + ‖g‖L2(K))

+ εβ (‖v‖
H

3
2 +ν

(K)d
+ ‖q‖

H
3
2 +ν

(K)
)

for all (v, q) ∈ H
3
2 +ν

0,S (K)d × H
3
2 +ν

0,S (K) solutions of{
−Pv + B∇q = f , in K,

Pq = g, in K.
(2.16)

Proof of lemma 2.15. Let 0 < ε < ε0 < r0 < R0. We denote by U = K(0, r0) and
Uε = K(ε, r0). Let χ ∈ C∞(K) be a function equal to zero in Kc, such that χ = 1 in U ,
0 � χ � 1 in K\U . We are going to apply successively a local Carleman inequality near
the boundary due to Lebeau–Robbiano (see [23]) on K and with φ(x) = eλxd to χv and χq:

∃ c > 0, h1 > 0, ∀ 0 < h < h1, ∀ (v, q) ∈ H
3
2 +ν

0,S (K)d × H
3
2 +ν

0,S (K) solutions of (2.16),∫
U

|v(x)|2 e2φ(x)/h dx + h2
∫

U
|∇v(x)|2 e2φ(x)/h dx

� ch3
∫

K
|χPv(x)|2 e2φ(x)/h dx + ch3

∫
K\U

|[P, χ ]v(x)|2 e2φ(x)/h dx

+ c
∫

Rd−1
(|χv(x′, 0)|2 + |h∂x′ (χv)(x′, 0)|2 + |h∂xd (χv)(x′, 0)|2) e2φ(x′,0)/h dx′,

(2.17)

and∫
U

|q(x)|2 e2φ(x)/h dx + h2
∫

K
|χ∇q(x)|2 e2φ(x)/h dx

� ch3
∫

K
|χPq(x)|2 e2φ(x)/h dx + ch3

∫
K\U

|[P, χ ]q(x)|2 e2φ(x)/h dx

+ ch2
∫

K\U
|q(x)|2 e2φ(x)/h dx

+ c
∫

Rd−1
(|χq(x′, 0)|2 + |h∂x′ (χq)(x′, 0)|2 + |h∂xd (χq)(x′, 0)|2) e2φ(x′,0)/h dx′.

(2.18)

By summing up inequalities (2.17) and (2.18), dividing by h2, replacing φ(x) by eλxd and
thanks to the trace inequality, we obtain, for h being small enough,

9
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e
eλε

h (‖v‖H1(K(ε,r0))d + ‖q‖H1(K(ε,r0)))

� c e
eλR0

h (‖v‖H1(K(r0,R0 ))d + ‖q‖H1(K(r0,R0 )) + ‖ f ‖L2(K)d + ‖g‖L2(K))

+ c

h
e

1
h (‖v‖

H
3
2 +ν

(K)d
+ ‖q‖

H
3
2 +ν

(K)
).

Remark that for all ε � 0, −eλε + 1 � −ε as long as λ is large enough. Thus,

‖v‖H1(K(ε,r0))d + ‖q‖H1(K(ε,r0))

� c e
c
h (‖v‖H1(K(r0,R0 ))d + ‖q‖H1(K(r0,R0 )) + ‖ f ‖L2(K)d + ‖g‖L2(K))

+ c

h
e− ε

h (‖v‖
H

3
2 +ν

(K)d
+ ‖q‖

H
3
2 +ν

(K)
).

Moreover, for all ε � 0, 1
h � 2

ε
e

ε
2h , which implies

‖v‖H1(K(ε,r0))d + ‖q‖H1(K(ε,r0))

� c e
c
h (‖v‖H1(K(r0,R0 ))d + ‖q‖H1(K(r0,R0 )) + ‖ f ‖L2(K)d + ‖g‖L2(K))

+ c

ε
e− ε

2h (‖v‖
H

3
2 +ν

(K)d
+ ‖q‖

H
3
2 +ν

(K)
).

According to lemma 2.2, we obtain

‖v‖H1(K(ε,r0))d + ‖q‖H1(K(ε,r0))

� c(‖v‖H1(K(r0,R0 ))d + ‖q‖H1(K(r0,R0 )) + ‖ f ‖L2(K)d + ‖g‖L2(K))
ε

ε+c

×
(

1

ε
(‖v‖

H
3
2 +ν

(K)d
+ ‖q‖

H
3
2 +ν

(K)
)

)1− ε
ε+c

.

Let s > 0 and μ > 1. The previous estimate can be rewritten as

‖v‖H1(K(ε,r0))d + ‖q‖H1(K(ε,r0))

� c(ε− c
ε
(s+1)(‖v‖H1(K(r0,R0 ))d + ‖q‖H1(K(r0,R0 )) + ‖ f ‖L2(K)d + ‖g‖L2(K)))

ε
ε+c

× (εs(‖v‖
H

3
2 +ν

(K)d
+ ‖q‖

H
3
2 +ν

(K)
))1− ε

ε+c

� cε− c(s+1)

ε (‖v‖H1(K(r0,R0 ))d + ‖q‖H1(K(r0,R0 )) + ‖ f ‖L2(K)d + ‖g‖L2(K))

+ εs(‖v‖
H

3
2 +ν

(K)d
+ ‖q‖

H
3
2 +ν

(K)
).

But ε− c(s+1)

ε = exp
(

c
ε
(s + 1) ln

(
1
ε

))
� exp

( c(s+1)

(μ−1)εμ

)
for ε being small enough. Finally, for all

s > 0, for all μ > 1, there exists c > 0, such that for all 0 < ε < ε0,

‖v‖H1(K(ε,r0))d + ‖q‖H1(K(ε,r0))

� c e
c

εμ (‖v‖H1(K(r0,R0 ))d + ‖q‖H1(K(r0,R0 )) + ‖ f ‖L2(K)d + ‖g‖L2(K))

+ εs(‖v‖
H

3
2 +ν

(K)d
+ ‖q‖

H
3
2 +ν

(K)
) (2.19)

for all (v, q) solutions of (2.16). It remains to estimate ‖v‖H1(K(0,ε)) + ‖q‖H1(K(0,ε)) uniformly
in ε. This is a consequence of the Hardy inequality (see [13]) that we recall below.

Lemma 2.16 (Hardy inequality). Let 0 < τ < 1
2 . There exists c > 0 such that for all

h ∈ Hτ (Rd
+), we have∥∥∥∥ h

xτ
d

∥∥∥∥
L2(Rd+)

� c‖h‖Hτ (Rd+).

We extend v and q by zero in R
d
+\K. Note that these extensions, denoted respectively

by ṽ and q̃, belong to H
3
2 +ν (Rd

+) (see [17]). Let χ̃ be a function which belongs to
C∞

c ({(x′, xd ) ∈ R
d
+/xd < r0}), such that χ̃ = 1 on K(0, ε) and 0 � χ̃ � 1 elsewhere.

10
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The functions χ̃ ṽ and χ̃ q̃ belong to H
3
2 +ν (Rd

+); therefore, as a result of the Hardy inequality,
we have that for all 0 < τ < 1

2 , there exists c > 0 such that∥∥∥∥ v

xτ
d

∥∥∥∥
L2(K(0,ε))d

�
∥∥∥∥ χ̃ ṽ

xτ
d

∥∥∥∥
L2(Rd+)d

� c‖χ̃ ṽ‖Hτ (Rd+)d .

Since χ̃ ṽ = 0 in
(
R

d
+\K

) ∪ K(r0, R0), we obtain∥∥∥∥ v

xτ
d

∥∥∥∥
L2(K(0,ε))d

� c‖v‖Hτ (K(0,r0 ))d � c‖v‖
H

1
2 (K(0,r0 ))d

.

Consequently, for all τ ∈ (
0, 1

2

)
, there exists c > 0 such that for all α > 0,

‖v‖L2(K(0,ε))d � cετ‖v‖
H

1
2 (K(0,r0 ))d

� cετ‖v‖
1
2

H1(K)d ‖v‖
1
2

L2(K(0,r0 ))d

� c

(
ε2τ

α
‖v‖H1(K)d + α‖v‖L2(K(0,r0 ))d

)
,

where we used an interpolation inequality and the Young inequality. In the same way, we have
for ∇v

‖∇v‖L2(K(0,ε))d×d � cετ‖∇v‖
H

1
2 (K(0,r0 ))d×d

� c

(
ετ (1+2ν) 1

α2ν
‖v‖

H
3
2 +ν

(K)d
+ α‖v‖H1(K(0,r0 ))d

)
.

To summarize, for all β ∈ (
0, 1

2 + ν
)
, there exists c > 0 such that for all 0 < α < 1,

‖v‖H1(K(0,ε))d � c

(
εβ

α
‖v‖

H
3
2 +ν

(K)d
+ α‖v‖H1(K(0,r0 ))d

)
.

The same inequality also holds for q. Thus, for all β ∈ (
0, 1

2 + ν
)
, there exists c > 0, such

that for all 0 < α < 1,

‖v‖H1(K(0,ε))d + ‖q‖H1(K(0,ε))

� c

(
εβ

α
(‖v‖

H
3
2 +ν

(K)d
+ ‖q‖

H
3
2 +ν

(K)
) + α(‖v‖H1(K(0,r0 ))d + ‖q‖H1(K(0,r0 )))

)
.

(2.20)

We can choose α to be small enough such that by combining (2.19) and (2.20) we have that
for all β ∈ (

0, 1
2 + ν

)
, for all μ > 1, there exists c > 0, such that for all 0 < ε < ε0,

‖v‖H1(K(0,r0 ))d + ‖q‖H1(K(0,r0 ))

� c e
c

εμ (‖v‖H1(K(r0,R0 ))d + ‖q‖H1(K(r0,R0 )) + ‖ f ‖L2(K)d + ‖g‖L2(K))

+ cεβ (‖v‖
H

3
2 +ν

(K)d
+ ‖q‖

H
3
2 +ν

(K)
).

By a change of variables, we obtain that, for all β ∈ (
0, 1

2 + ν
)
, there exists c > 0, such that

for all 0 < ε < ε̃0,

‖v‖H1(K(0,r0 ))d + ‖q‖H1(K(0,r0 ))

� e
c
ε (‖v‖H1(K(r0,R0 ))d + ‖q‖H1(K(r0,R0 )) + ‖ f ‖L2(K)d + ‖g‖L2(K))

+ εβ (‖v‖
H

3
2 +ν

(K)d
+ ‖q‖

H
3
2 +ν

(K)
). (2.21)

At last, we note that, since H
3
2 +ν (K) ↪→ H1(K(0, r0)), this last inequality remains true for

ε � ε̃0. �

11
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Let us now prove proposition 2.5.

Proof of proposition 2.5. We are first going to prove that there exist an open neighborhood
ω̂ of x0 and two relatively compact open sets ω̃1 ⊂ � and ω̃2 ⊂ �, such that for
all β ∈ (

0, 1
2 + ν

)
, there exists c > 0, such that for all ε > 0 and for all (u, p) ∈

H
3
2 +ν (�)d × H

3
2 +ν (�) solutions of (1.1),

‖u‖H1(ω̂∩�)d + ‖p‖H1(ω̂∩�) � e
c
ε (‖u‖H1(ω̃1)d + ‖p‖H1(ω̃1) + ‖u‖H1(ω̃2)d + ‖p‖H1(ω̃2))

+ εβ (‖u‖
H

3
2 +ν

(�)d
+ ‖p‖

H
3
2 +ν

(�)
). (2.22)

Then, to pass from (2.22) to (2.6) to obtain the estimate for any ω, it is sufficient to apply
inequality (2.5) of proposition 2.4.

Let V be a neighborhood of x0 such that � ∩ V = {(x′, xd ) ∈ V | xd > σ (x′)} with
σ ∈ C∞. By using the normal geodesic coordinates, it is possible to straighten locally in a
neighborhood V of x0 the Laplace operator and the boundary simultaneously. Restricting, if
necessary, the open set V , we can assume that there exists a neighborhood Ṽ ⊂ V of x0, a
surface S such that S∩ Ṽ = ∂�∩ Ṽ , and S is deformed inwardly in the open set � in V\Ṽ (this
means that there exists s ∈ C∞ such that S = {(x′, xd ) ∈ V | xd = s(x′)} with s = σ in Ṽ and
s > σ in V\Ṽ) and a diffeomorphism, denoted ψ , which straightens both S and the Laplace
operator. Let us denote by �̃ = {(x′, xd ) ∈ V | xd > s(x′)}. Note that, by construction, there
exists 0 < r3 < R0, such that ψ−1({x ∈ K | r3 < |x|}) is a relatively compact open set of � and
K = {x ∈ R

d
+| |x| � R0} ⊂ ψ(�̃). Let ξ ∈ C∞

c (K) be such that ξ = 1 in {x ∈ R
d
+ | |x| � r3}

and 0 � ξ � 1 elsewhere. Let us denote by � = ξ ◦ ψ . Note that since (v, q) = (�u, �p) is
the solution in �̃ ∩ V of{−�v + ∇q = f ,

�q = g,

with f = −u�� − 2∇u∇� + ∇�p and g = ��p + 2∇� · ∇p, then (w, π ) =
((�u) ◦ ψ−1, (�p) ◦ ψ−1) is the solution in K of{

−Pw + (∇ψ)T ∇π = f ◦ ψ−1,

Pπ = g ◦ ψ−1.
(2.23)

We apply lemma 2.15 to (w, π ). We obtain that for all β ∈ (
0, 1

2 + ν
)
, there exists c > 0, such

that for all ε > 0,

‖w‖H1(K(0,r0 )∩B(0,r3 ))d + ‖π‖H1(K(0,r0 )∩B(0,r3 ))

� e
c
ε (‖w‖H1(K(r0,R0 ))d + ‖π‖H1(K(r0,R0 )) + ‖ f ◦ ψ−1‖L2(K)d + ‖g ◦ ψ−1‖L2(K))

+ εβ (‖w‖
H

3
2 +ν

(K)d
+ ‖π‖

H
3
2 +ν

(K)
).

In other words, there exist an open neighborhood ω̂ of x0 and a relatively compact open set
ω̃1 ⊂ �, such that for all β ∈ (

0, 1
2 + ν

)
, there exists c > 0, such that for all ε > 0 and for all

(u, p) ∈ H
3
2 +ν (�)d × H

3
2 +ν (�) solutions of (1.1),

‖u‖H1(ω̂∩�)d + ‖p‖H1(ω̂∩�) � e
c
ε (‖u‖H1(ω̃1)d + ‖p‖H1(ω̃1) + ‖ f ‖L2(�̃)d + ‖g‖L2(�̃))

+ εβ (‖u‖
H

3
2 +ν

(�)d
+ ‖p‖

H
3
2 +ν

(�)
).

To conclude, let us remark that since ξ = 1 in
{
x ∈ R

d
+

∣∣ |x| � r3
}
, supp(∇ξ ) ⊂ {x ∈ K | r3 <

|x|} and then supp(∇�) ⊂ ψ−1({x ∈ K | r3 < |x|}), which is a relatively compact open set of
�. Then, recalling the definition of f and g, we obtain that there exists a relatively compact

12
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open set ω̃2 ⊂ � such that for all β ∈ (
0, 1

2 + ν
)
, there exists c > 0, such that for all ε > 0

and for all (u, p) ∈ H
3
2 +ν (�)d × H

3
2 +ν (�) solutions of (1.1),

‖u‖H1(ω̂∩�)d + ‖p‖H1(ω̂∩�) � e
c
ε (‖u‖H1(ω̃1)d + ‖p‖H1(ω̃1) + ‖u‖H1(ω̃2)d + ‖p‖H1(ω̃2))

+ εβ (‖u‖
H

3
2 +ν

(�)d
+ ‖p‖

H
3
2 +ν

(�)
).

�

Let us end this subsection with the proof of proposition 2.6.

Proof of proposition 2.6. Let x0 ∈ �. We are going to prove that there exists a
neighborhood ω of x0 such that there exist c, s > 0 such that for all ε > 0, for all
(u, p) ∈ H

3
2 +ν (�)d × H

3
2 +ν (�) solutions of (1.1),

‖u‖H1(ω∩�)d + ‖p‖H1(ω∩�) � c

ε

(
‖u‖H1(�)d + ‖p‖H1(�) +

∥∥∥∥∂u

∂n

∥∥∥∥
L2(�)d

+
∥∥∥∥∂ p

∂n

∥∥∥∥
L2(�)

)

+ εs(‖u‖H1(�)d + ‖p‖H1(�)), (2.24)

which implies proposition 2.6 thanks to inequality (2.5) of proposition 2.4.
Near the boundary, in a neighborhood of x0, we go back to the half-plane, thanks to

geodesic normal coordinates: let ψ , R0 > 0 and V be such that ψ(� ∩ V ) = {
x ∈ R

d
+

∣∣ |x| <

R0
} = K̊ and ψ(∂�∩V ) = {(x′, xd ) ∈ R

d | xd = 0 and |x| < R0}. We can always assume that
V is small enough to have ∂�∩V ⊂ �. In the following, we denote by � = ψ(∂�∩V ) ⊂ R

d−1

and by (v, q) = (u ◦ ψ−1, p ◦ ψ−1). Note that (v, q) is the solution in K of{
−Pv + (∇ψ)T∇q = 0,

Pq = 0.
(2.25)

We are going to prove that there exists a neighborhood θ of 0 such that for all ε > 0, for
all (v, q) ∈ H

3
2 +ν (K)d × H

3
2 +ν (K) solutions of (2.25),

‖v‖H1(K∩θ )d + ‖q‖H1(K∩θ ) � c

ε
(‖v‖H1(�)d + ‖q‖H1(�) + ‖∂xd v‖L2(�)d + ‖∂xd q‖L2(�))

+ εs(‖v‖H1(K)d + ‖q‖H1(K)).

Let U = {x ∈ K | xd + |x|2 � r0} with r0 being small enough and χ ∈ C∞
c (K) be such that

χ = 1 on U, 0 � χ � 1 in K\U . By the successive application of a local Carleman inequality
due to Lebeau–Robbiano (see [27]) on K and with φ = e−λ(xd+|x|2) to χv and to χq, we obtain
(in the same way as in the proof of lemma 2.15) that there exist c > 0, h1 > 0, such that for
all 0 < h < h1, for all (v, q) ∈ H

3
2 +ν (K)d × H

3
2 +ν (K) satisfying (2.25),∫

U
(|v(x)|2 + |q(x)|2) e2φ(x)/h dx + h2

∫
U
(|∇v(x)|2 + |∇q(x)|2) e2φ(x)/h dx

� ch3
∫

K\U
|∇q(x)|2 e2φ(x)/h dx + ch2

∫
K\U

|q(x)|2 e2φ(x)/h dx

+ ch3
∫

K\U
(|[P, χ ]v(x)|2 + |[P, χ ]q(x)|2) e2φ(x)/h dx

+ c
∫

Rd−1
(|h∂x′ (χv)(x′, 0)|2 + |h∂x′ (χq)(x′, 0)|2 + |h∂xd (χv)(x′, 0)|2

+ |h∂xd (χq)(x′, 0)|2) e2φ(x′,0)/h dx′

+ c
∫

Rd−1
(|χv(x′, 0)|2 + |χq(x′, 0)|2) e2φ(x′,0)/h dx′.

13
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We denote by R(r, r′) = {x ∈ K | r < xd + |x|2 < r′}. The previous inequality becomes, with
0 < z1 < r0 < z2 < R0,

e
e−λz1

h (‖v‖H1(R(0,z1 ))d + ‖q‖H1(R(0,z1 ))) � c e
e−λz2

h (‖v‖H1(R(z2,R0 ))d + ‖q‖H1(R(z2,R0 )))

+ c e
1
h (‖v‖H1(�)d + ‖∂xd v‖L2(�)d + ‖q‖H1(�) + ‖∂xd q‖L2(�)).

Accordingly, there exist c, h1 > 0, such that for all 0 < h < h1, for all (v, q) ∈
H

3
2 +ν (�)d × H

3
2 +ν (�) solutions of (2.25),

‖v‖H1(R(0,z1 ))d + ‖q‖H1(R(0,z1 )) � c e− 1
h (‖v‖H1(K)d + ‖q‖H1(K))

+ c e
c
h (‖v‖H1(�)d + ‖∂xd v‖L2(�)d + ‖q‖H1(�) + ‖∂xd q‖L2(�)).

We can conclude the proof in the same way as we concluded the proof of inequality (2.5): we
obtain inequality (2.24) with ω ∩ � = ψ−1(R(0, z1)). �

2.3. Global estimates

In this subsection, we conclude the proofs of theorems 2.1 and 2.3. Let us first prove
theorem 2.3.

Proof of theorem 2.3. Let ω̂ be a relatively compact open set in �. For each x ∈ ∂�,
we deduce from proposition 2.5 that there exists a neighborhood ωx of x, such that for
all β ∈ (

0, 1
2 + ν

)
, there exists c > 0, such that for all ε > 0 and for all (u, p) ∈

H
3
2 +ν (�)d × H

3
2 +ν (�) solutions of (1.1), inequality (2.6) is satisfied. We point out that

∂� ⊆ ⋃
x∈∂� wx and that ∂� is compact. Thus, we can extract a finite subcover: there

exist N ∈ N and xi ∈ ∂�, i = 1, . . . , N, such that ∂� ⊂ ⋃N
i=1 ωxi . For i = 1, . . . , N, let us

denote by ωi = ωxi . As a result, we obtain that for all β ∈ (
0, 1

2 + ν
)
, there exists c > 0, such

that for all i ∈ {1, . . . , N}, for all ε > 0, for all (u, p) ∈ H
3
2 +ν (�)d × H

3
2 +ν (�) solutions

of (1.1),

‖u‖H1(ωi∩�)d + ‖p‖H1(ωi∩�) � e
c
ε (‖u‖H1(ω̂)d + ‖p‖H1(ω̂)) + εβ (‖u‖

H
3
2 +ν

(�)d
+ ‖p‖

H
3
2 +ν

(�)
).

We denote by ϒ = ⋃N
i=1 (ωi ∩ �) . Let r > 0. Let us consider a finite cover of �\ϒ : there exist

Ñ ∈ N and yi ∈ �, i = 1, . . . , Ñ, such that �\ϒ ⊂ ⋃Ñ
i=1 B(yi, r). For all i = 1, . . . , Ñ, up to

a decreasing r, B(yi, r) is a relatively compact open set in � where we can apply inequality
(2.5) of proposition 2.4: there exist c, s > 0, such that for all i ∈ {1, . . . , Ñ}, for all ε > 0, for
all (u, p) ∈ H1(�)d × H1(�) solutions of (1.1),

‖u‖H1(B(yi,r))d + ‖p‖H1(B(yi,r)) � c

ε
(‖u‖H1(ω̂)d + ‖p‖H1(ω̂)) + εs(‖u‖H1(�)d + ‖p‖H1(�)).

Thus, by summing up the two previous inequalities, taking into account remark 2.13, we
obtain that for all β ∈ (

0, 1
2 + ν

)
, there exists c > 0, such that for all ε > 0, for all

(u, p) ∈ H
3
2 +ν (�)d × H

3
2 +ν (�) solutions of (1.1),

‖u‖H1(�)d + ‖p‖H1(�) � e
c
ε (‖u‖H1(ω̂)d + ‖p‖H1(ω̂)) + εβ (‖u‖

H
3
2 +ν

(�)d
+ ‖p‖

H
3
2 +ν

(�)
). (2.26)

It remains to pass from a relatively compact open set ω̂ to an open set ω (not necessarily
relatively compact): we use inequality (2.5) of proposition 2.4 in order to estimate
‖u‖H1(ω̂)d +‖p‖H1(ω̂) in inequality (2.26) by ‖u‖H1(ω)d +‖p‖H1(ω). It directly gives us inequality
(2.4) of theorem 2.3.

14
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Now, if we apply proposition 2.6, we obtain, ε being suitably chosen,

‖u‖H1(�)d + ‖p‖H1(�) � e
c
ε

(
‖u‖H1(�)d + ‖p‖H1(�) +

∥∥∥∥∂u

∂n

∥∥∥∥
L2(�)d

+
∥∥∥∥∂ p

∂n

∥∥∥∥
L2(�)

)

+ εβ (‖u‖
H

3
2 +ν

(�)d
+ ‖p‖

H
3
2 +ν

(�)
). (2.27)

Let θ = 1
1+ν

∈ (0, 1). Using an interpolation inequality, we obtain that there exists c > 0 such
that

‖u‖H1(�)d + ‖p‖H1(�) � c
(‖u‖1−θ

L2(�)d ‖u‖θ
H1+ν (�)d + ‖p‖1−θ

L2(�)
‖p‖θ

H1+ν (�)

)
.

If we write that

‖u‖1−θ

L2(�)d ‖u‖θ
H1+ν (�)d = e

2cθ
ε ‖u‖1−θ

L2(�)d e− 2cθ
ε ‖u‖θ

H1+ν (�)d

and

‖p‖1−θ

L2(�)
‖p‖θ

H1+ν (�)
= e

2cθ
ε ‖p‖1−θ

L2(�)
e− 2cθ

ε ‖p‖θ
H1+ν (�)

,

according to the Young inequality and to the continuity of the trace operator from H
3
2 +ν (�)

onto H1+ν (�), we obtain

‖u‖H1(�)d + ‖p‖H1(�) � c(e
−2c
ε (‖u‖

H
3
2 +ν

(�)d
+ ‖p‖

H
3
2 +ν

(�)
) + e

2c
εν (‖u‖L2(�)d + ‖p‖L2(�))).

Using the fact that e
−c
ε � Cεβ for all ε > 0 allows us to replace ‖u‖H1(�)d + ‖p‖H1(�) on the

right-hand side of inequality (2.27) by ‖u‖L2(�)d + ‖p‖L2(�). This proves inequality (2.3) of
theorem 2.3. �

Proof of theorem 2.1. We introduce two open sets �̃ and ω̃ ⊂ �̃ such that ω̃ ⊂⊂ ω and
K ⊂⊂ �̃ ⊂⊂ �, Let us apply proposition 2.4 to estimate u and p on K :⎧⎨
⎩

∃ c, s > 0,∀ ε > 0,∀ (u, p) ∈ H1(�)d × H1(�) solutions of (1.1),

‖u‖H1(K)d + ‖p‖L2(K) � c

ε
(‖u‖H1(ω̃)d + ‖p‖H1(ω̃)) + εs(‖u‖H1(�̃)d + ‖p‖H1(�̃)).

(2.28)

Then, theorem 2.1 directly follows thanks to the Caccioppoli inequality that we recall in
lemma 2.17 below (see [20]). �

Lemma 2.17 (Caccioppoli inequality). Let v be a weak solution of �v = 0 in � ⊂ R
d. Then,

there exists C > 0 such that for all x0 ∈ � and 0 < ρ < R < d(x0, ∂�), we have∫
B(x0,ρ)

|∇v|2 � C

(R − ρ)2

∫
B(x0,R)

|v|2.

Remark 2.18. The proof of proposition 2.4 together with the Caccioppoli inequality contains
all the tools needed to prove an interesting result, which is, in the case of the Stokes system, a
three-balls inequality involving the velocity in the H1-norm and the pressure in the L2-norm.
We refer to [16] for a statement and a proof of this result.
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2.4. Comments

Let us now conclude this section by some comments. By borrowing the approach developed by
Phung in [25], we have thus proved the stability estimates stated in theorems 2.1 and 2.3 that
quantify the unique continuation result of Fabre and Lebeau in [18]. The Carleman estimate
that we use near the boundary is a consequence of pseudo-differential calculus. To apply
this technique, the domain has to be very regular. In [8], Bourgeois proved that the stability
estimates proved by Phung in [25] for C∞ domains still hold for domains of class C1,1. To
derive estimates near the boundary, he used the global Carleman estimate near the boundary on
the initial geometry, by following the method of [19]. Moreover, in [9], Bourgeois and Dardé
completed the results obtained in [8]: they proved a conditional stability estimate related to
the ill-posed Cauchy problem for the Laplace equation in domain with the Lipschitz boundary.
For such non-smooth domains, difficulties occur when one wants to estimate the function in a
neighborhood of ∂�: the authors use an interior Carleman estimate and a technique based on
a sequence of balls which approach the boundary, which is inspired by [1]. Let us emphasize
the fact that the inequality obtained in this way is valid for a regular solution u (u belongs to
C1,α (�) and is such that �u ∈ L2(�)), and that boundary conditions are known on a part of
the boundary. These two results suggest that it could be possible to extend estimates (2.3) and
(2.4) to less regular open sets. Another improvement could be to study whether the stability
estimate of proposition 2.6 still holds if we have less measurements on the boundary. Let us
note that in a recent work, one of the authors obtains a Lipschitz stability estimate under the
a priori assumption that the Robin coefficient lives in some compact and convex subset of
a finite-dimensional vectorial subspace of the set of continuous functions involving only the
velocity in the L2-norm (see [14]).

These kinds of stability estimates can be used for different purposes. For example, Phung
uses the stability estimate stated in [25] for the Laplace equation to establish an estimate of the
cost of an approximate control function for an elliptic model equation. In [9], Bourgeois and
Dardé use stability estimates to study the convergence rate for the method of quasi-reversibility
introduced in [22] to solve Cauchy problems. In [5], Bellassoued et al use a stability estimate
proved by Phung in [25] to solve an inverse problem similar to the one we are interested in,
but for the Laplace equation. As far as we are concerned, we are going to use our stability
estimates to study the inverse problem of identifying a Robin coefficient from measurements
available on a part of the boundary in the Stokes system: this is the subject of the next section.

3. Application to an inverse problem

Throughout this section, we assume that the boundary of � is composed of two sets �0 and
�out such that �out ∪ �0 = ∂� and �out ∩ �0 = ∅. An example of such geometry in dimension
2 is given in figure 1.

Let us recall the inverse problem we are interested in: we want to obtain a stability result
for the Robin coefficient q defined on �out with respect to the values of u and p on � ⊆ �0

for the (u, p) solution of system (1.5). Let us point out that the uniqueness issue related to our
inverse problem has already been studied in [7] and is a consequence of corollary 1.2. More
precisely, in [7], we have stated that, under some assumptions on the flux g and on the Robin
coefficient q, if the velocities are equal on some nonempty open set � ⊆ �0, then the Robin
coefficients are equal on �out.

Notation 3.1. We introduce the following functional spaces:

V = {v ∈ H1(�)d | div v = 0 on �}
16
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Figure 1. Example of an open set � ⊂ R
2, such that ∂� = �0 ∪ �out and �0 ∩ �out = ∅.

and

H = V
L2(�)d

.

Before proving theorem 1.5, let us recall the following regularity result (which is proved
in [7]).

Proposition 3.2. Let k ∈ N and s ∈ R be such that s > d−1
2 and s � 1

2 + k. Assume that � is of
class Ck+1,1. Let α > 0, M > 0, g ∈ H

1
2 +k(�0)

d and q ∈ Hs(�out) be such that α � q on �out.
Then, the solution (u, p) of system (1.5) belongs to Hk+2(�)d × Hk+1(�). Moreover, there
exists a constant C(α, M) > 0 such that for every q ∈ Hs(�out) satisfying ‖q‖Hs(�out ) � M,

‖u‖Hk+2(�)d + ‖p‖Hk+1(�) � C(α, M)‖g‖
Hk+ 1

2 (�0)d
.

Proof of theorem 1.5. Let us emphasize the fact that, thanks to proposition 3.2, there exists
C(α, M1, M2) > 0 such that

‖u j‖Hk+2(�)d + ‖p j‖Hk+1(�) � C(α, M1, M2) for j = 1, 2. (3.1)

In the following, we denote by u = u1 − u2 and p = p1 − p2. We have

(q2 − q1)u1 = q2u + ∂u

∂n
− pn on �out. (3.2)

Consequently, since |u1| � m > 0 on K,

‖q1 − q2‖L2(K) � 1

m
C(M2)

(
‖u‖L2(K)d +

∥∥∥∥∂u

∂n

∥∥∥∥
L2(K)d

+ ‖p‖L2(K)

)
. (3.3)

Since K and � are in C∞, we can construct an open set ω ⊂ � of class C∞ such that K ⊂ ∂ω

and � ⊂ ∂ω. Then, for all 0 < ε < 3
2 , using the trace continuity and an interpolation inequality,

we have

‖q1 − q2‖L2(K) � 1

m
C(M2)(‖u‖H3/2+ε (ω)d + ‖p‖L2(ω))

� 1

m
C(M2)

(‖u‖θ
H1(ω)d ‖u‖1−θ

H3(ω)d + ‖p‖L2(ω)

)
, (3.4)

17
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where θ = 3
4

(
1 − 2ε

3

)
. According to inequality (3.1), we then deduce

‖q1 − q2‖L2(K) � 1

m
C(α, M1, M2)

(‖u‖θ
H1(ω)d + ‖p‖θ

L2(ω)

)
.

Let β ∈ (0, 1) be fixed. We choose 0 < ε < 3
2 to be small enough such that β ′ = β

1− 2ε
3

belongs to (0, 1). We denote by A = ‖u‖H2(ω)d + ‖p‖H2(ω) and B = ‖u‖L2(�)d + ‖p‖L2(�) +∥∥ ∂u
∂n

∥∥
L2(�)d + ∥∥ ∂ p

∂n

∥∥
L2(�)

. Applying inequality (1.3) of theorem 1.4 with ν = 1
2 and with β ′, we

find that there exists d0 > 0 such that for all d̃ > d0, there exists C(α, M1, M2) > 0:

‖q1 − q2‖L2(K) � 1

m
C(α, M1, M2)

Aθ(
ln

(
d̃ A

B

))β ′θ . (3.5)

We conclude by studying the variation of the function defined by fy(x) = x
(ln( x

y ))β
′ on (y,+∞)

for y = B
d̃

. We have f ′
y(x) = ln( x

y )−β ′

(ln( x
y ))β

′+1 . Let us denote by x0 = y eβ ′
. The function fy is decreasing

on (y, x0] and is increasing on [x0,+∞). For d̃ being large enough, A � x0. Thanks to (3.1)
and since f is increasing on [x0,+∞), we directly deduce that f B

d̃
(A) � f B

d̃
(C(α, M1, M2)).

Using this result in (3.5), we find that there exist C(α, M1, M2) > 0 and C1(α, M1, M2) > 0,
such that

‖q1 − q2‖L2(K) � 1

m

C(α, M1, M2)(
ln

(
C1(α,M1,M2 )

‖u‖L2 (�)d +‖p‖L2 (�)
+‖ ∂u

∂n ‖L2 (�)d +‖ ∂ p
∂n ‖L2 (�)

))β ′θ ,

and since β ′θ = 3β/4 and ∂u
∂n = pn on �, this concludes the proof of the theorem. �

Remark 3.3. Since g is not identically zero, corollary 1.2 ensures that {x ∈ �0 | u1(x) �= 0}
is not empty. Moreover, according to proposition 3.2, u1 is continuous; thus, we obtain the
existence of a compact K and a constant m as in theorem 1.5. We note however that the
constants involved in estimate (1.6) and the set K depend on u1. Finding a uniform lower
bound for any solution u of system (1.5) remains an open question. We refer to [2], [3] and
[11] for the case of the scalar Laplace equation.

Remark 3.4. Outside the set K, an estimate of q1 −q2 may be undetermined or highly unstable.
In particular, an estimate of the Robin coefficients on the whole set �out might be worse than
that of the logarithmic type (see [6]). Note however that for a simplified problem, it is in fact
possible to obtain a logarithmic stability estimate on the whole set �out which does not depend
on a given reference solution (see [7]).

Remark 3.5. In inequality (1.6), the power 3β/4 is directly linked to the regularity of the
solution (u, p). If we are more precise in our estimates, we can note that this power may be
improved by a power which depends on k. Indeed, coming back to inequalities (3.4) and using
that (u, p) ∈ Hk+2(�)d × Hk+1(�), we obtain that

‖q1 − q2‖L2(K) � 1

m
C(M2)

(‖u‖θ̃
H1(ω)d ‖u‖1−θ̃

Hk+2(ω)d + ‖p‖L2(ω)

)
,

where θ̃ = 1/2+k
1+k − ε

1+k . This estimate allows us to obtain the power 1/2+k
1+k β instead of 3β/4

in inequality (1.6) (when k = 1, these powers are equal).

Remark 3.6. Note that we can still obtain inequality (1.6) by enforcing less regularity on the
solution (u, p). In particular, if we consider the case when d � 5, it is sufficient to assume that
(uj, p j) belongs to H

5
2 +ν (�) × H

3
2 +ν (�) and q j belongs to L∞(�out), and that

‖u j‖H
5
2 +ν

(�)d
+ ‖p j‖H

3
2 +ν

(�)
� M1 and ‖q j‖L∞(�out) � M2

18
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for j = 1, 2. In this case, the velocity u1 is still continuous, and with the same reasons as in
remark 3.3, there exist a compact K and a constant m > 0 as in theorem 1.5. Next, instead of
inequalities (3.4), we use

‖q1 − q2‖L2(K) � 1

m
C(M2)(‖u‖H3/2+ν/3(ω)d + ‖p‖L2(ω))

� 1

m
C(M2)

(‖u‖2/3
H1(ω)d ‖u‖1/3

H5/2+ν (ω)d + ‖p‖L2(ω)

)
.

Then, by applying the same reasoning as above, we find that for all β ∈ (0, 1), there exist
C(α, M1, M2) > 0 and C1(α, M1, M2) > 0 such that

‖q1 − q2‖L2(K) � 1

m

C(α, M1, M2)(
ln

(
C1(α,M1,M2 )

‖u1−u2‖L2 (�)d +‖p1−p2‖L2 (�)
+‖ ∂ p1

∂n − ∂ p2
∂n ‖L2 (�)

)) 2
3 β

.

Let us note that, due to the fact that the solution is less regular, the power in this inequality is
weaker than that in inequality (1.6) (2β/3 instead of 3β/4 for β ∈ (0, 1)).

Remark 3.7. Assume that ∂� = �0 ∪�out ∪�l , �0 ∩�out = ∅, �l ∩�out = ∅ and �0 ∩�l = ∅.
Then, theorem 1.5 remains true for the (u, p) solution of the system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−�u + ∇p = 0, in �,

div u = 0, in �,

u = 0, on �l,

∂u

∂n
− pn = g, on �0,

∂u

∂n
− pn + qu = 0, on �out,

where we have added a homogeneous Dirichlet boundary condition on the part of the boundary
�l . Indeed, for this problem, we still have enough regularity on the solution to apply the
same reasoning as in the proof of theorem 1.5. Moreover, we can discard the assumptions
�l ∩ �out = ∅ and �0 ∩ �l = ∅ if we assume that K ⊂⊂ �0 and � ⊂⊂ �out. This allows us to
consider domains which are closer to the ones that we encounter in applications such as, for
instance, the first generations of the bronchial tree (see [4]).

Remark 3.8. As in [7], we can obtain from theorem 1.5 a stability estimate for the unsteady
problem when the Robin coefficient does not depend on time and under assumptions on the
asymptotic behavior of the flux g when it depends on time. The key idea is to estimate the
difference between the solution of the stationary problem and the solution of the non-stationary
problem by a function which tends to zero as t tends to zero, using an inequality coming from
semigroup theory. Doing so, the measurements have to be made in infinite time. Let us recall
that Bellassoued et al have already used this idea in [5] in the case of the Laplace equation
with mixed Neumann and Robin boundary conditions.

The result stated in theorem 1.5 could be improved in different ways. In the stability
estimate (1.6), the Robin coefficients are estimated on a compact subset K ⊂ �out which is
not a fixed inner portion of �out, but is unknown and depends on a given reference solution.
To the best of our knowledge, obtaining an estimate of the Robin coefficients on the whole
set �out or on any compact subset K ⊂ �out is still an open question. At last, another natural
issue concerns the optimality of the logarithmic stability estimates. In [29], the Hölder stability
estimates are obtained for the scalar Laplace equation when the Robin coefficient is piecewise
constant. For the Stokes equation, this question has been addressed in [16] where a similar
result has been proved.
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[21] Hörmander L 1985 The Analysis of Linear Partial Differential Operators: III. Pseudo-Differential Operators

(Fundamental Principles of Mathematical Sciences vol 274) (Berlin: Springer)
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