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Université Pierre et Marie Curie-Paris 6,

UMR 7598, Laboratoire Jacques-Louis Lions,
75005 Paris, France

and
INRIA, Projet REO,

Rocquencourt, BP 105,

78153 Le Chesnay cedex, France

Anne-Claire Egloffe

INRIA, Projet REO,

Rocquencourt, BP 105,
78153 Le Chesnay cedex, France

and
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Abstract. In this paper, we consider the Stokes equations and we are con-

cerned with the inverse problem of identifying a Robin coefficient on some non

accessible part of the boundary from available data on the other part of the
boundary. We first study the identifiability of the Robin coefficient and then

we establish a stability estimate of logarithm type thanks to a Carleman in-

equality due to A. L. Bukhgeim [11] and under the assumption that the velocity
of a given reference solution stays far from 0 on a part of the boundary where

Robin conditions are prescribed.

1. Introduction. Let us consider an open Lipschitz bounded connected domain Ω
of Rd, d ≥ 2. We assume that the boundary ∂Ω is composed of two open non-empty
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parts Γ0 and Γe such that Γe∪Γ0 = ∂Ω and Γe∩Γ0 = ∅ (Figure 1 gives an example
of such a geometry in dimension 2).

We denote by n the exterior unit normal to Ω and let τ = (τ1, . . . , τd−1) be d− 1
vectors of Rd such that (n, τ) is an orthogonal basis of Rd.

0

Figure 1. Example of an open set Ω such that Γe ∪ Γ0 = ∂Ω and
Γe ∩ Γ0 = ∅ in dimension 2.

We introduce the following boundary problem:

∂tu(t, x)−∆u(t, x) +∇p(t, x) = 0, ∀x ∈ Ω,∀ t > 0,
div u(t, x) = 0, ∀x ∈ Ω,∀ t > 0,

∂u

∂n
(t, x)− p(t, x)n(x) = g(t, x), ∀x ∈ Γe,∀ t > 0,

∂u

∂n
(t, x)− p(t, x)n(x) + q(x)u(t, x) = 0, ∀x ∈ Γ0,∀ t > 0,

u(0, x) = u0(x), ∀x ∈ Ω.

(1.1)

Notice that we assume that the Robin coefficient q defined on Γ0 only depends on
the space variable. Our objective is to determine the coefficient q from the values
of u and p on Γe.

Such kinds of systems naturally appear in the modeling of biological problems
like, for example, blood flow in the cardiovascular system (see [13] and [14]) or
airflow in the lungs (see [15]). For an introduction on the modeling of the airflow
in the lungs and on different boundary conditions which may be prescribed, we
refer to [1]. The part of the boundary Γe represents a physical boundary on which
measurements are available and Γ0 represents an artificial boundary on which Robin
boundary conditions or mixed boundary conditions involving the fluid stress tensor
and its flux at the outlet are prescribed.

Similar inverse problems have been widely studied for the Laplace equation [12],
[16], [17], [19], [18] and [20]. This kind of problems arises in general in corrosion de-
tection which consists in determining a Robin coefficient on the inaccessible portion
of the boundary thanks to electrostatic measurements performed on the accessible
boundary. Most of these papers prove a logarithmic stability estimate ([12], [16], [17]
and [18]). We mention that, in [19], S. Chaabane and M. Jaoua obtained both local
and monotone global Lipschitz stability for regular Robin coefficient and under the
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assumption that the flux g is non negative. Under the a priori assumption that the
Robin coefficient is piecewise constant, E. Sincich has obtained in [20] a Lipschitz
stability estimate. To prove stability estimates, different approaches are developed
in these papers. A first one consists in using the complex analytic function theory
(see [12], [17]). A characteristic of this method is that it is only valid in dimension
2. Another classical approach is based on Carleman estimates (see [16] and [18]).
In [16], the authors use a result proved by K.D. Phung in [21] to obtain a logarith-
mic stability estimate which is valid in any dimension for an open set Ω of class
C∞. This result has been generalized in [23] and [22] to C1,1 and Lipschitz domains.
Moreover, in [16], the authors use semigroup theory to obtain a stability estimate in
long time for the heat equation from the stability estimate for the Laplace equation.

In this article, we prove an identifiability result and a logarithmic stability es-
timate for the Stokes equations with Robin boundary conditions 1.1 under the
assumption that the velocity of a given reference solution stays far from 0 on a part
of the boundary where Robin conditions are prescribed. We would like to highlight
why this assumption appears for the inverse problem of recovering a Robin coeffi-
cient. Let us consider (ui, pi) be solutions of system 1.1 associated to q = qi, for
i = 1, 2. Using the boundary conditions on Γ0, we obtain

(q2 − q1)u1 = q2(u1 − u2) +

(
∂u1

∂n
− ∂u2

∂n

)
− (p1 − p2)n.

When u1 vanishes, difficulties occur to estimate the difference between the Robin
coefficients q2 − q1. In the case of the scalar Laplace equation, it is possible to
determine the sign of u solution of

∆u = 0, in Ω,
∂u

∂n
= g, on Γe,

∂u

∂n
+ qu = 0, on Γ0,

on any compact subset K ⊂ Γ0 under some positivity assumption on the flux g
(see [19]). Such a result comes from properties specific to harmonic functions,
like for instance the maximum principle. When the flux g has a variable sign, G.
Alessandrini, L. Del Piero and L. Rondi provide in [12] a quantitative control of
the vanishing rate of u that allows to estimate the difference between the Robin
coefficients on {x ∈ Γ0/d(x, ∂Ω\Γ0) > d)}, for any d > 0, by using methods of
complex analytic function theory. Moreover, G. Alessandrini and E. Sincich proved
in [24] that the oscillation of u on Γ0 is bounded from below by a constant depend-
ing on the a priori data only. To do so, they use unique continuation estimates
for the Laplace equation. Due to the methods employed, it does not seem that we
can extend these results to the Stokes system. This is why we estimate the Robin
coefficient on a compact subset K ⊂ Γ0 on which u1 does not vanish. This estimate
and the set K depend on u1, and knowing whether one can control our solution,
for well chosen data, on the whole set Γ0 or on any compact subset K ⊂ Γ0 re-
mains an open problem. Note however that in a really particular case (detailed in
Remark 4.9), one can obtain a logarithmic estimate on the whole set Γ0.

The paper is organized as follows. The second section contains preliminary results
on the regularity of the solution. In the third section, we are interested in the
identifiability of the Robin coefficient q. Under some regularity assumptions and
using the theorem of unique continuation for the Stokes equations proved in [25],
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we prove that if two measurements of the velocity are equal on (0, T ) × Γ, where
Γ ⊆ Γe is a non-empty open subset of the boundary, then the two corresponding
Robin coefficients are also equal on Γ0. Section 4 corresponds to the main part of
our article. The results of this section are only valid in dimension 2. We prove
a stability estimate, first for the stationary problem and then for the evolution
problem. To do this, we use a global Carleman inequality due to A. L. Bukhgeim
which is only valid in dimension 2 (see [11]). The stability estimate for the unsteady
problem is deduced from the stability estimate for the stationary problem thanks
to the semigroup theory. We end Section 4 by concluding remarks and perspectives
to this work.

When we are not more specific, C is a generic constant, whose value may change
and which only depends on the geometry of the open set Ω and of the boundaries
Γe and Γ0. Moreover, we denote indifferently by | | a norm on Rn, for any n ≥ 1.

We are going to start with some preliminary results which will be useful in the
subsequent sections.

2. Preliminary results. In this section we study the well–posedness of the system
and the regularity of the solution.

2.1. Regularity of the stationary problem. Let us first consider the stationary
case: 

−∆u+∇p = f, in Ω,
div u = 0, in Ω,
∂u

∂n
− pn = g, on Γe,

∂u

∂n
− pn+ qu = 0, on Γ0.

(2.1)

For g ∈ H− 1
2 (Γe)

d and v ∈ H 1
2 (Γe)

d, we denote by < g, v >− 1
2 ,

1
2 ,Γe

the image of v

by the linear form g.
Let us introduce some functional spaces:

V =
{
v ∈ H1(Ω)d/div v = 0 in Ω

}
and

H = V
L2(Ω)

d

.

Proposition 2.1. Let α > 0, f ∈ L2(Ω)d, g ∈ H−
1
2 (Γe)

d and q ∈ L∞(Γ0) be
such that q ≥ α on Γ0. System 2.1 admits a unique solution (u, p) ∈ V × L2(Ω).
Moreover, there exists a constant C(α) > 0 such that

‖u‖H1(Ω)d ≤ C(α)(‖g‖
H−

1
2 (Γe)d

+ ‖f‖L2(Ω)d). (2.2)

Proof of Proposition 2.1. The variational formulation of the problem is: find u ∈ V
such that for every v ∈ V ,∫

Ω

∇u : ∇v +

∫
Γ0

qu · v =< g, v|Γe >− 1
2 ,

1
2 ,Γe

+

∫
Ω

f · v.

For all (u, v) ∈ V × V , we denote by

aq(u, v) =

∫
Ω

∇u : ∇v +

∫
Γ0

qu · v, (2.3)

and for all v ∈ V ,

L1(v) =< g, v|Γe >− 1
2 ,

1
2 ,Γe

+

∫
Ω

f · v.
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We easily verify that aq is a continuous symmetric bilinear form. Since q ≥ α > 0,
according to the generalized Poincaré inequality, the bilinear form aq is coercive on
V . On the other hand, L1 is a continuous linear form on V . Thus we prove the
existence and uniqueness of u ∈ V solution of 2.1 by using Lax-Milgram Theorem.
We obtain simultaneously estimate 2.2. We prove the existence and uniqueness of
p ∈ L2

0(Ω) in a classical way, using De Rham Theorem. The fact that p is unique
in L2(Ω) comes from the boundary conditions. We refer to [2] for a complete proof
in the case of Neumann boundary condition.

Next we want to derive regularity properties of the solution. Let us first recall
existence and regularity results for the Stokes problem with Neumann boundary
condition proved in [2].

Proposition 2.2. Let k ∈ N. Assume that Ω is of class Ck+1,1. We assume that:

(f, h) ∈ Hk(Ω)d ×Hk+ 1
2 (∂Ω)d.

Then the solution (u, p) of
−∆u+∇p = f, in Ω,
div u = 0, in Ω,
∂u

∂n
− pn = h, on ∂Ω,

belongs to Hk+2(Ω)d ×Hk+1(Ω) and there exists a constant C > 0 such that:

‖u‖Hk+2(Ω)d + ‖p‖Hk+1(Ω) ≤ C(‖h‖
Hk+ 1

2 (∂Ω)d
+ ‖f‖Hk(Ω)d).

In order to study the Stokes system with Robin boundary conditions, one needs
to specify to which space the Robin coefficient q belongs. As stated in Proposition
2.4, we will assume that q belongs to some Sobolev space Hs(Γ0) where s is large
enough so that qu|Γ0

belongs to Hr(Γ0) if u|Γ0
belongs to Hr(Γ0). This stability in

the Sobolev spaces will allow to apply the previous proposition (Proposition 2.2).
Before stating the regularity result, let us state the following lemma:

Lemma 2.3. Let r, s ∈ R, with s > d−1
2 and 0 ≤ r ≤ s. Let q ∈ Hs(Γ0). The

linear operator

T : Hr(Γ0) → Hr(Γ0)
u 7→ qu

is continuous. Furthermore, the following estimate holds true

‖qu‖Hr(Γ0) ≤ C‖q‖Hs(Γ0)‖u‖Hr(Γ0).

Proof of Lemma 2.3. Since s > d−1
2 , Hs(Γ0) is a Banach algebra (see [3]) and

thus T ∈ L(Hs(Γ0), Hs(Γ0)) and ‖T‖s = supu∈Hs(Γ0),u 6=0
‖Tu‖Hs(Γ0)

‖u‖Hs(Γ0)
≤ ‖q‖Hs(Γ0).

Moreover, since Hs(Γ0) ↪→ L∞(Γ0), T ∈ L(L2(Γ0), L2(Γ0)) and

‖T‖0 = sup
u∈L2(Γ0),u6=0

‖Tu‖L2(Γ0)

‖u‖L2(Γ0)
≤ ‖q‖L∞(Γ0) ≤ C‖q‖Hs(Γ0).

Thus, the result follows by interpolation (see [4] or [5]).

From Proposition 2.2 and Lemma 2.3 we deduce the following result:
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Proposition 2.4. Let k ∈ N and s ∈ R with s > d−1
2 and s ≥ k + 1

2 . Assume

that Ω is of class Ck+1,1. Let α > 0, M > 0, f ∈ Hk(Ω)d, g ∈ Hk+ 1
2 (Γe)

d and
q ∈ Hs(Γ0) such that q ≥ α on Γ0. Then the solution (u, p) of system 2.1 belongs
to Hk+2(Ω)d ×Hk+1(Ω). Moreover, there exists a constant C(α,M) > 0 such that
for every q ∈ Hs(Γ0) satisfying ‖q‖Hs(Γ0) ≤M ,

‖u‖Hk+2(Ω)d + ‖p‖Hk+1(Ω) ≤ C(α,M)(‖g‖
Hk+ 1

2 (Γe)d
+ ‖f‖Hk(Ω)d).

Proof of Proposition 2.4. Let us prove the result for k = 0. Let h = −qu|Γ0
+ g.

According to Proposition 2.1, u belongs to H1(Ω)d. We obtain from Lemma 2.3 for

r = 1/2 that qu|Γ0
∈ H 1

2 (Γ0)d , which implies, since g ∈ H 1
2 (Γe)

d and Γe ∩ Γ0 = ∅,
that h ∈ H

1
2 (∂Ω)d. Using Proposition 2.2 with k = 0 we obtain that (u, p) ∈

H2(Ω)d ×H1(Ω) and:

‖u‖H2(Ω)d + ‖p‖H1(Ω) ≤ C(‖h‖
H

1
2 (∂Ω)d

+ ‖f‖L2(Ω)d).

But, since by assumption, ‖q‖Hs(Γ0) ≤M , we have from Lemma 2.3 with r = 1/2,
that:

‖h‖
H

1
2 (∂Ω)d

≤ C(M)(‖u‖
H

1
2 (∂Ω)d

+ ‖g‖
H

1
2 (Γe)d

).

We obtain:

‖u‖H2(Ω)d + ‖p‖H1(Ω) ≤ C(M)(‖g‖
H

1
2 (Γe)d

+ ‖u‖H1(Ω)d + ‖f‖L2(Ω)d).

Thus we obtain the result for k = 0 using the inequality of Proposition 2.1. We
then proceed by induction to prove the result for any k ∈ N.

Remark 2.5. Note that the space to which the Robin coefficient q belongs is
not optimal. One could surely obtain similar regularity result for a less regular
Robin coefficient. In fact, the key argument to proceed by induction in the proof
of Proposition 2.4 is that qu|Γ0

∈ Hk+ 1
2 (Γ0)d, for u ∈ Hk+ 1

2 (Γ0)d (this property
allows to apply the regularity result given by Proposition 2.2).

2.2. Regularity of the evolution problem. Concerning the initial problem 1.1,
we can prove, using the Galerkin method, the following regularity results. For the
sake of completeness, the proof of Theorem 2.6 is given in the appendix.

Theorem 2.6. Let s ∈ R be such that s > d−1
2 , T > 0, α > 0 and u0 ∈ V . We

assume that Ω is of class C1,1, g ∈ H1(0, T ;H
1
2 (Γe)

d) and q ∈ Hs(Γ0) is such that
q ≥ α on Γ0. Then problem 1.1 admits a unique solution (u, p) ∈ L2(0, T ;H2(Ω)d)∩
H1(0, T ;L2(Ω)d) ∩ L∞(0, T ;V )× L2(0, T ;H1(Ω)).

The following corollary will be useful when we will prove stability estimates for
the evolution problem 1.1.

Corollary 2.7. Let s ∈ R be such that s > d−1
2 and s ≥ 3

2 , T > 0, α > 0 and

u0 ∈ H3(Ω)d ∩ H. We assume that Ω is of class C2,1, g ∈ H2(0, T ;H
3
2 (Γe)

d)
and that q ∈ Hs(Γ0) is such that q ≥ α on Γ0. Then, problem 1.1 admits a
unique solution (u, p) ∈ L∞(0, T ;H3(Ω)d)∩H1(0, T ;H2(Ω)d)∩H2(0, T ;L2(Ω)d)×
L∞(0, T ;H2(Ω)) ∩H1(0, T ;H1(Ω)).
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Proof of Corollary 2.7. Let (u, p) be the solution of 1.1. Let us consider the follow-
ing system: 

∂tv −∆v +∇ζ = 0, in (0, T )× Ω,
div v = 0, in (0, T )× Ω,
∂v

∂n
− ζn = ∂tg, on (0, T )× Γe,

∂v

∂n
− ζn+ qv = 0, on (0, T )× Γ0,

v(0) = ∆u0 −∇p0, in Ω,

(2.4)

where p0 ∈ H2(Ω) is defined as the solution of the following elliptic boundary
problem: 

∆p0 = 0, in Ω,

p0 =
∂u0

∂n
· n− g|t=0 · n, on Γe,

p0 =
∂u0

∂n
· n+ qu0 · n, on Γ0.

According to Theorem 2.6, we obtain that (v, ζ) belongs to L2(0, T ;H2(Ω)d) ∩
H1(0, T ;L2(Ω)d)∩L∞(0, T ;V )×L2(0, T ;H1(Ω)). Remark that (∂tu, ∂tp) is solution
of system 2.4 in the distribution sense on (0, T ). Thus, by uniqueness, (v, ζ) =

(∂tu, ∂tp). Then, since q ∈ Hs(Γ0) and (∂tu, g) ∈ L∞(0, T ;V )×L∞(0, T ;H
3
2 (Γe)

d)
we deduce from Proposition 2.4 that (u, p) ∈ L∞(0, T ;H3(Ω)d)×L∞(0, T ;H2(Ω)).

3. Identifiability.

3.1. Unique continuation. We start by recalling a unique continuation result for
the Stokes equations proved in [25].

Theorem 3.1. We denote by Q = (0, T ) × Ω and let O be an open subset in Q.
The horizontal component of O is

C(O) = {(t, x) ∈ Q/∃x0 ∈ Ω, (t, x0) ∈ O}.

Let (u, p) ∈ L2(0, T ;H1
loc(Ω))d × L2

loc(Q) be a weak solution of{
∂tu−∆u+∇p = 0, in (0, T )× Ω,

div u = 0, in (0, T )× Ω,

satisfying u = 0 in O then u = 0 and p is constant in C(O).

From this theorem, we easily deduce the following result which will be useful in
the next subsection.

Corollary 3.2. Let δ > 0, x0 ∈ ∂Ω, t0 ∈ (0, T ) and r > 0 be such that γ =
(t0 − δ, t0 + δ) × (B(x0, r) ∩ ∂Ω) is an open set in (0, T ) × ∂Ω. Let (u, p) ∈
L2(0, T ;H2(Ω)d)× L2(0, T ;H1(Ω)) be solution of:{

∂tu−∆u+∇p = 0, in (0, T )× Ω,
div u = 0, in (0, T )× Ω,

satisfying u = 0 and
∂u

∂n
−pn = 0 on γ. Then u = 0 and p = 0 in (t0−δ, t0 +δ)×Ω.
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Proof of Corollary 3.2. We extend u and p by 0 on (t0− δ, t0 + δ)× (B(x0, r)∩Ωc):

ũ (resp p̃) =

{
u (resp p), in (t0 − δ, t0 + δ)× Ω,
0, in (t0 − δ, t0 + δ)× (B(x0, r) ∩ Ωc),

and we denote Ω̃ = Ω ∪ B(x0, r). Let us verify that (ũ, p̃) ∈ L2(0, T ;H1(Ω)d) ×
L2(0, T ;L2(Ω)) is still a solution of the Stokes equations in Ω̃. Let v ∈ D(Ω̃)d. We
check by integration by parts in space that almost everywhere in t ∈ (t0− δ, t0 + δ):∫

Ω̃

∂tũ · v +

∫
Ω̃

∇ũ : ∇v −
∫

Ω̃

p̃ div v = 0.

Moreover div ũ = 0 in (t0 − δ, t0 + δ) × Ω̃. Therefore, we can apply Theorem 3.1

to (ũ, p̃): (ũ, p̃) = (0, 0) in (t0 − δ, t0 + δ) × Ω̃ which implies that u = 0 and p is

constant in (t0− δ, t0 + δ)×Ω. At last, the fact that
∂u

∂n
− pn = 0 on γ implies that

p = 0 in (t0 − δ, t0 + δ)× Ω.

3.2. Application.

Proposition 3.3. Let s > d−1
2 , T > 0, α > 0, xe ∈ Γe, r > 0, g ∈ H1(0, T ;H

1
2 (Γe)

d)
be non identically zero, u0 ∈ V and qj ∈ Hs(Γ0) be such that qj ≥ α on Γ0 for
j = 1, 2. Let (uj , pj) be the weak solutions of 1.1 with q = qj for j = 1, 2. We
assume that u1 = u2 on (0, T )× (B(xe, r) ∩ Γe). Then q1 = q2 on Γ0.

Proof of Proposition 3.3. We are going to prove Proposition 3.3 by contradiction:
we assume that q1 is not identically equal to q2 on Γ0.

Thanks to Theorem 2.6, we have (uj , pj) ∈ L2(0, T ;H2(Ω)d) × L2(0, T ;H1(Ω))
for j = 1, 2. We define by u = u1 − u2 and p = p1 − p2. Let us notice that (u, p) is
the solution of the following problem:

∂tu−∆u+∇p = 0, in (0, T )× Ω,
div u = 0, in (0, T )× Ω,
∂u

∂n
− pn = 0, on (0, T )× Γe,

∂u

∂n
− pn+ q1u1 − q2u2 = 0, on (0, T )× Γ0.

By assumption, u = 0 and
∂u

∂n
−pn = 0 on (0, T )× (B(xe, r)∩Γe). Thus, according

to Corollary 3.2, u1 = u2 and p1 = p2 in (0, T )×Ω. Consequently, we deduce from

∂u1

∂n
− p1n+ q1u1 = 0, on (0, T )× Γ0,

∂u1

∂n
− p1n+ q2u1 = 0, on (0, T )× Γ0,

that

u1(q1 − q2) = 0 on (0, T )× Γ0. (3.1)

By assumption, q1 is not identically equal to q2. Since s >
d− 1

2
, q1 and q2 are

continuous on Γ0. Thus, we can find an open set κ ⊂ Γ0 with a positive measure
such that:

(q1 − q2)(x) 6= 0, ∀x ∈ κ.



STABILITY ESTIMATES FOR A ROBIN COEFFICIENT IN THE STOKES SYSTEM 9

Equation 3.1 implies that u1 ≡ 0 on (0, T )× κ and then u1 is the solution of
∂tu1 −∆u1 +∇p1 = 0, in (0, T )× Ω,

div u1 = 0, in (0, T )× Ω,
u1 = 0, on (0, T )× κ,

∂u1

∂n
− p1n = 0, on (0, T )× κ.

Applying again Corollary 3.2, we obtain that u1 = 0 and p1 = 0 in (0, T )×Ω. This
is in contradiction with the fact that g is non identically zero.

4. Stability estimates. In this section, we assume that d = 2 and that the open
set Ω ⊂ R2 is of class C3,1.

We are going to prove stability estimates for the inverse problem we are interested
in by using a global Carleman inequality which is stated in Lemma 4.1.

First, in Theorem 4.3, we state a stability estimate for the stationary problem.
Then we deduce from this theorem two stability estimates for the evolution prob-
lem 1.1 by using an inequality coming from the analytic semigroup theory. To be
more precise, we treat separately the case where g does not depend on time (see
Theorem 4.18) and the case where g depends on time (see Theorem 4.21).

4.1. Carleman inequality. Let us state a global Carleman inequality proved by
A. L. Bukhgeim in [11]:

Lemma 4.1. Let Ψ ∈ C2(Ω). We have:∫
Ω

(∆Ψ|u|2 + (∆Ψ− 1)|∇u|2)eΨ

≤
∫

Ω

|∆u|2eΨ +

∫
∂Ω

∂Ψ

∂n

(
|u|2 + |∇u|2 + 2

∣∣∣∣∂|∇u|2∂τ

∣∣∣∣) eΨ (4.1)

for all u ∈ C2(Ω).

The proof of this result, which is only valid in dimension 2, uses computational
properties of function defined on C (in particular, the fact that 4∂z∂z = ∆).

Remark 4.2. The result is still true for u ∈ H3(Ω). Indeed, for all u ∈ H3(Ω),
there exists (un)n∈N ∈ C2(Ω)N such that

un → u in H3(Ω). (4.2)

We can apply Lemma 4.1 to un, for all n ∈ N. Let us prove that:

lim
n→∞

∫
∂Ω

∂Ψ

∂n

∣∣∣∣∂|∇un|2∂τ

∣∣∣∣ eΨ =

∫
∂Ω

∂Ψ

∂n

∣∣∣∣∂|∇u|2∂τ

∣∣∣∣ eΨ. (4.3)

Note first that

∫
∂Ω

∂Ψ

∂n

∣∣∣∣∂|∇u|2∂τ

∣∣∣∣ eΨ has a meaning for u ∈ H3(Ω):

∫
∂Ω

∂Ψ

∂n

∣∣∣∣∂|∇u|2∂τ

∣∣∣∣ eΨ ≤ 2‖Ψ‖C1(Ω)‖e
Ψ‖C0(Ω)

(
2∑
i=1

∫
∂Ω

|∇u| · |∇∂iu|

)
<∞.
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We have:∫
∂Ω

∣∣∣∣∂Ψ

∂n

∣∣∣∣ ∣∣∣∣∣∣∣∣∂|∇un|2∂τ

∣∣∣∣− ∣∣∣∣∂|∇u|2∂τ

∣∣∣∣∣∣∣∣ eΨ

≤ C‖Ψ‖C1(Ω)‖e
Ψ‖C0(Ω)

2∑
i,j=1

(∫
∂Ω

|∂ju|2
) 1

2
(∫

∂Ω

|∂ijun − ∂iju|2
) 1

2

+ C‖Ψ‖C1(Ω)‖e
Ψ‖C0(Ω)

2∑
i,j=1

(∫
∂Ω

|∂ijun|2
) 1

2
(∫

∂Ω

|∂jun − ∂ju|2
) 1

2

.

According to 4.2, the sequence (∂ijun)n∈N converges in L2(∂Ω) towards ∂iju and
‖∂ijun‖L2(∂Ω) is bounded by a constant independent of n. Then, equality 4.3 follows
from 4.2.

4.2. The stationary case. For the stationary problem:

−∆u+∇p = 0, in Ω,
div u = 0, in Ω,
∂u

∂n
− pn = g, on Γe,

∂u

∂n
− pn+ qu = 0, on Γ0,

(4.4)

we have the following stability estimate.

Theorem 4.3. Let α > 0, M1 > 0, M2 > 0, (g, qj) ∈ H
5
2 (Γe)

2 × H
5
2 (Γ0) for

j = 1, 2 be such that g is not identically zero, ‖g‖
H

5
2 (Γe)

≤ M1, qj ≥ α on Γ0 and

‖qj‖
H

5
2 (Γ0)

≤ M2. We denote by (uj , pj) the solution of sustem 4.4 associated to

q = qj for j = 1, 2. Let K be a compact subset of {x ∈ Γ0/u1(x) 6= 0} and m > 0
be a constant such that |u1| ≥ m on K.

Then there exist positive constants C(M1,M2, α) and C1(M1,M2, α) such that

‖q1− q2‖L2(K) ≤
1

m

C(M1,M2, α)(
ln

(
C1(M1,M2,α)

‖u1−u2‖L2(Γe)2+‖p1−p2‖L2(Γe)+‖ ∂p1
∂n −

∂p2
∂n ‖L2(Γe)

)) 1
2

. (4.5)

Remark 4.4. Since g is not identically zero, Corollary 3.2 ensures that {x ∈
Γ0/u1(x) 6= 0} is not empty. Moreover, according to Proposition 2.4, u1 is con-
tinuous on Ω, thus we obtain the existence of a compact K and a constant m as
in Theorem 4.3. We notice however that the constants involved in the estimate 4.5
and the set K depend on u1. Finding a uniform lower bound for any solution u of
system 4.4 remains an open question. We refer to [19], [12] and [24] for the case of
the scalar Laplace equation.

Remark 4.5. In [18], the same kind of inequality is proved for the Laplacian prob-
lem with Robin boundary conditions under the hypothesis that the measurements
are small enough. Here, we free ourselves from this smallness assumption on the
measurements.

Remark 4.6. If we compare this result with the identifiability property (Propo-
sition 3.3), we notice that we need additional measurements on the solution. In

Proposition 3.3, we only have to assume that u1 = u2 and
∂u1

∂n
− p1n =

∂u2

∂n
− p2n

on Γ ⊆ Γe, where Γ is a non-empty open part of the boundary, in order to get the
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identifiability of the Robin coefficient q on Γ0. Here, besides a measurement on

u1 − u2, we need measurements on
∂u1

∂n
− ∂u2

∂n
(or p1 − p2) and

∂p1

∂n
− ∂p2

∂n
.

Let us begin by proving this intermediate result which gives us a logarithmic
estimate of the traces of u, ∇u, p, ∇p on Γ0 with respect to the ones on Γe.

Lemma 4.7. Let (u, p) ∈ H4(Ω)2 ×H3(Ω) be the solution in Ω of{
−∆u+∇p = 0,
div u = 0.

Then, there exist C > 0, C1 > 0 and d0 > 0 such that for all d̃ > d0:

‖u‖L2(Γ0)2 + ‖∇u‖L2(Γ0)4 + ‖p‖L2(Γ0) + ‖∇p‖L2(Γ0)2

≤ d̃C
‖u‖H3(Ω)2 + ‖p‖H3(Ω)(

ln

(
C1d̃2

‖u‖H3(Ω)2+‖p‖H3(Ω)

‖u‖L2(Γe)2+‖ ∂u∂n‖L2(Γe)2
+‖p‖L2(Γe)+‖ ∂p∂n‖L2(Γe)

)) 1
2

. (4.6)

Proof of Lemma 4.7. The proof is based on the Carleman inequality of Lemma 4.1
for an appropriate choice of Ψ. Note that we will apply 4.1 twice: one time for the
velocity u and one time for the pressure p. The weight function Ψ is chosen in order
to estimate the traces on Γ0 with respect to the ones on Γe.

Step 1: choice of Ψ.

We choose Ψ as in [18]. There exists Ψ0 ∈ C2(Ω) non identically zero such that:

∆Ψ0 = 0 in Ω, Ψ0 = 0 on Γ0, Ψ0 ≥ 0 on Γe,
∂Ψ0

∂n
< 0 on Γ0.

Indeed, let χ ∈ C2(∂Ω) such that

χ = 0 on Γ0, χ ≥ 0 on Γe,

and χ non identically zero on Γe. The boundary value problem :{
∆Ψ0 = 0, in Ω,

Ψ0 = χ, on ∂Ω,
(4.7)

has a unique solution Ψ0 ∈ C2(Ω). Note that Ψ0 is not constant because χ is non
identically zero. So, from the strong maximum principle, Ψ0 > 0 in Ω. According

to Hopf Lemma, we have
∂Ψ0

∂n
< 0 on Γ0.

Let λ > 0. We denote by Ψ1 ∈ C2(Ω) the unique solution of the boundary value
problem: {

∆Ψ1 = λ, in Ω,
Ψ1 = 0, on ∂Ω.

From the comparison principle and the strong maximum principle, we have Ψ1 < 0

in Ω. Moreover, according to the Hopf Lemma, we have
∂Ψ1

∂n
> 0 on ∂Ω.

Let us consider Ψ = Ψ1 + sΨ0, for s > 0. To summarize, the function Ψ has
the following properties:

∆Ψ = λ in Ω, Ψ = 0 on Γ0, Ψ ≥ 0 on Γe, and s
∂Ψ0

∂n
≤ ∂Ψ

∂n
≤ ∂Ψ1

∂n
on Γ0.
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Step 2: We first apply Lemma 4.1 to u. Using the fact that ∆u = ∇p, we have:∫
Ω

(∆Ψ|u|2+(∆Ψ− 1)|∇u|2)eΨ

≤
∫

Ω

|∇p|2eΨ +

∫
∂Ω

∂Ψ

∂n

(
|u|2 + |∇u|2 + 2

∣∣∣∣∂|∇u|2∂τ

∣∣∣∣) eΨ.

(4.8)

Then, we apply once again Lemma 4.1 to p:∫
Ω

(∆Ψ|p|2+(∆Ψ− 1)|∇p|2)eΨ

≤
∫

Ω

|∆p|2eΨ +

∫
∂Ω

∂Ψ

∂n

(
|p|2 + |∇p|2 + 2

∣∣∣∣∂|∇p|2∂τ

∣∣∣∣) eΨ.

(4.9)

We have ∆p = div(∆u) = 0 hence

∫
Ω

|∆p|2eΨ = 0. We now choose λ ≥ 2. By

summing up inequalities 4.8 and 4.9 and by eliminating the integrals on Ω in the
left hand side which are positive terms, we obtain:

∫
∂Ω

∂Ψ

∂n

(
|u|2 + |∇u|2 + 2

∣∣∣∣∂|∇u|2∂τ

∣∣∣∣) eΨ

+

∫
∂Ω

∂Ψ

∂n

(
|p|2 + |∇p|2 + 2

∣∣∣∣∂|∇p|2∂τ

∣∣∣∣) eΨ ≥ 0.

We now specify the dependence with respect to s. We denote by θ = min
Γ0

∣∣∣∣∂Ψ0

∂n

∣∣∣∣.
We note that on Γ0, eΨ = 1. Consequently:

−sθ
∫

Γ0

(|u|2 + |∇u|2 + |p|2 + |∇p|2) +

∫
Γ0

∂Ψ1

∂n

(
|u|2 + |∇u|2 + |p|2 + |∇p|2

)
+2

∫
Γ0

∂Ψ

∂n

(∣∣∣∣∂|∇p|2∂τ

∣∣∣∣+

∣∣∣∣∂|∇u|2∂τ

∣∣∣∣)+ 2

∫
Γe

∂Ψ

∂n

(∣∣∣∣∂|∇p|2∂τ

∣∣∣∣+

∣∣∣∣∂|∇u|2∂τ

∣∣∣∣) eΨ

+

∫
Γe

∂Ψ

∂n
(|u|2 + |∇u|2 + |p|2 + |∇p|2)eΨ ≥ 0.

(4.10)

Let us study each of the terms. We have:∫
Γ0

∂Ψ1

∂n
(|u|2 + |∇u|2 + |p|2 + |∇p|2) ≤ C(‖u‖2H3(Ω)2 + ‖p‖2H3(Ω)).

Moreover, since
∂Ψ

∂n
≤ ∂Ψ1

∂n
on Γ0, we obtain:

2

∫
Γ0

∂Ψ

∂n

(∣∣∣∣∂|∇p|2∂τ

∣∣∣∣+

∣∣∣∣∂|∇u|2∂τ

∣∣∣∣) ≤ C(‖u‖2H3(Ω)2 + ‖p‖2H3(Ω)).

Since, on Γe,

∣∣∣∣∂Ψ

∂n

∣∣∣∣ ≤ sC for s ≥ 1, we have:∫
Γe

∂Ψ

∂n
(|u|2 + |∇u|2 + |p|2 + |∇p|2)eΨ ≤ Cs

∫
Γe

(|u|2 + |∇u|2 + |p|2 + |∇p|2)eΨ.
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Using Cauchy-Schwarz inequality, we obtain:

2

∫
Γe

∂Ψ

∂n

(∣∣∣∣∂|∇p|2∂τ

∣∣∣∣+

∣∣∣∣∂|∇u|2∂τ

∣∣∣∣) eΨ

≤ sC(‖u‖H3(Ω)2 + ‖p‖H3(Ω))

(∫
Γe

(|∇p|2 + |∇u|2)e2Ψ

) 1
2

.

Note that eΨ depends on s on Γe. Hence, reassembling these inequalities, inequal-
ity 4.10 becomes:

θ

∫
Γ0

(|u|2 + |∇u|2 + |p|2 + |∇p|2) ≤ C
(
Ks +

1

s
(‖u‖2H3(Ω)2 + ‖p‖2H3(Ω))

)
, (4.11)

where

Ks = (‖u‖H3(Ω)2 + ‖p‖H3(Ω))

(∫
Γe

(|∇p|2 + |∇u|2)e2Ψ

) 1
2

+

∫
Γe

(|u|2 + |∇u|2 + |p|2 + |∇p|2)eΨ. (4.12)

In order to study the dependence with respect to s of Ks, we define B by:

B = ‖u‖L2(Γe)2 + ‖p‖L2(Γe) +

∥∥∥∥∂u∂n
∥∥∥∥
L2(Γe)2

+

∥∥∥∥ ∂p∂n
∥∥∥∥
L2(Γe)

. (4.13)

Let us estimate the first term in the expression of Ks. Remark that, thanks to
classical interpolation inequalities (see [3]), there exists C > 0 such that for all
f ∈ H2(Γe): ∥∥∥∥∂f∂τ

∥∥∥∥
L2(Γe)

≤ ‖f‖H1(Γe) ≤ C‖f‖
1
2

L2(Γe)
‖f‖

1
2

H2(Γe)
.

Applying the previous inequality, there exists C > 0 such that:∫
Γe

∣∣∣∣∂u∂τ
∣∣∣∣2 ≤ C‖u‖H3(Ω)2‖u‖L2(Γe)2 and

∫
Γe

∣∣∣∣∂p∂τ
∣∣∣∣2 ≤ C‖p‖H3(Ω)‖p‖L2(Γe). (4.14)

We obtain, using the fact that ∇v =
∂v

∂n
n +

∂v

∂τ
τ on ∂Ω for all v ∈ H2(Ω), and

thanks to inequality 4.14, that there exists C > 0 such that:

∫
Γe

(|∇p|2 + |∇u|2)e2Ψ ≤e2ks

(∥∥∥∥ ∂p∂n
∥∥∥∥2

L2(Γe)

+

∥∥∥∥∂u∂n
∥∥∥∥2

L2(Γe)2

)
+ e2ks

(
C‖u‖H3(Ω)2‖u‖L2(Γe)2 + C‖p‖H3(Ω)‖p‖L2(Γe)

)
≤Ce2ks‖u‖H3(Ω)2

(∥∥∥∥∂u∂n
∥∥∥∥
L2(Γe)2

+ ‖u‖L2(Γe)2

)

+ Ce2ks‖p‖H3(Ω)

(∥∥∥∥ ∂p∂n
∥∥∥∥
L2(Γe)

‖p‖L2(Γe)

)
≤Ceks

(
‖u‖H3(Ω)2 + ‖p‖H3(Ω)

)
B,
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where k = max
Γ

Ψ0. Similarly, for the second term in the expression of Ks we prove

that ∫
Γe

(|u|2 + |∇u|2 + |p|2 + |∇p|2)eΨ ≤Ceks
(
‖u‖H3(Ω)2 + ‖p‖H3(Ω)

)
B

≤Ceks
(
‖u‖H3(Ω)2 + ‖p‖H3(Ω)

) 3
2 B

1
2 .

Thus, using the two previous inequalities, according to the definition 4.12 of Ks, we
obtain,

Ks ≤ Ceks
(
‖u‖H3(Ω)2 + ‖p‖H3(Ω)

) 3
2 B

1
2 .

Let us denote by
A = ‖u‖H3(Ω)2 + ‖p‖H3(Ω).

Hence we get from 4.11:∫
Γ0

(|u|2 + |∇u|2 + |p|2 + |∇p|2) ≤ C
(
A

3
2 eksB

1
2 +

A2

s

)
,

for all s ≥ 1. Remark that this inequality is trivially verified for 0 < s ≤ 1 by
continuity of the trace mapping. Let d̃ ≥ 1. To summarize, we have proved that:∫

Γ0

(|u|2 + |∇u|2 + |p|2 + |∇p|2) ≤ CA 3
2

(
eksB

1
2 +

d̃A
1
2

s

)
, ∀s > 0.

We now optimize the upper bound with respect to s. We denote by

f(s) = eksB
1
2 +

d̃A
1
2

s
.

Let us study the function f in R∗+. We have:{
lims→0 f(s) = +∞,
lims→∞ f(s) = +∞.

So since f is continuous on R+
∗ , f reaches its minimum at a point s0 > 0. At this

point,

f ′(s0) = 0⇔ B
1
2 =

e−ks0 d̃A
1
2

ks0
2

, thus f(s0) =
d̃A

1
2

ks2
0

+
d̃A

1
2

s0
.

Hence: ∫
Γ0

(|u|2 + |∇u|2 + |p|2 + |∇p|2) ≤ Cd̃A2

sβ0

(
1

k
+ 1

)
,

where β = 1 if s0 ≥ 1 and β = 2 otherwise. But, we notice that

1

B
1
2

=
ks0

2eks0

d̃A
1
2

≤ ke(k+2)s0

d̃A
1
2

,

that is to say:
1

s0
≤ k + 2

ln

(
d̃A

1
2

kB
1
2

) ,
if d̃ is larger than a constant which only depends on k and on the continuity constants
of the trace mapping. In the same way, when s0 < 1 , we obtain:

1

s2
0

≤ 1

ln

(
d̃A

1
2

kekB
1
2

) ,
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if d̃ is larger than a constant which only depends on k and on the continuity constants

of the trace mapping. Using the fact that ln
(
x

1
2

)
= 1

2 ln(x) for all x > 0 and

according to the definition 4.13 of B, the desired result follows.

Remark 4.8. Let Γ ⊆ Γe be a non-empty open part of Γe. Inequality 4.6 of
Lemma 4.7 still holds if we replace Γe by Γ in the right-hand side. To prove
this, it is sufficient in the definition 4.7 of Ψ0 to define χ ∈ C2(∂Ω) such that
χ = 0 on Γ0 ∪ (Γe \ Γ) and χ ≥ 0 on Γ.

Let us now prove Theorem 4.3.

Proof of Theorem 4.3. Since g ∈ H 5
2 (Γe)

2 and qj ∈ H
5
2 (Γ0) for j = 1, 2, thanks to

Proposition 2.4 applied for k = 2, there exists C(α,M1,M2) > 0 such that:

‖uj‖H4(Ω)2 + ‖pj‖H3(Ω) ≤ C(α,M1,M2), for j = 1, 2. (4.15)

In the following, we denote by u = u1 − u2 and p = p1 − p2. We have:

(q2 − q1)u1 = q2u+
∂u

∂n
− pn, on Γ0. (4.16)

Consequently, since |u1| ≥ m > 0 on K:

‖q1 − q2‖L2(K) ≤
1

m
C(M2)

(
‖u‖L2(Γ0)2 +

∥∥∥∥∂u∂n
∥∥∥∥
L2(Γ0)2

+ ‖p‖L2(Γ0)

)
. (4.17)

Let us denote by

A = ‖u‖H3(Ω)2 + ‖p‖H3(Ω)

and

B = ‖u‖L2(Γe)2 + ‖p‖L2(Γe) +

∥∥∥∥∂u∂n
∥∥∥∥
L2(Γe)2

+

∥∥∥∥ ∂p∂n
∥∥∥∥
L2(Γe)

.

By applying Lemma 4.7, we obtain that there exists there exists C(M2) > 0, C1 > 0

and d0 > 0 such that for all d̃ > d0:

‖q1 − q2‖L2(K) ≤
d̃C(M2)

m

A(
ln
(
C1d̃2 A

B

)) 1
2

. (4.18)

We are going to concude the proof by studying the variation of the function

defined by fy(x) =
x(

ln
(
x
y

)) 1
2

on (y,+∞), for y =
B

C1d̃2
. We have

f ′y(x) =
ln
(
x
y

)
− 1

2

ln
(
x
y

) 3
2

.

Let us denote by x0 = ye
1
2 . The function fy is decreasing on (y, x0] and is increasing

on [x0,+∞). For d̃ large enough, we have A ≥ x0 by continuity of the trace
mapping. Using 4.15 and since fy is increasing on [x0,+∞), we directly deduce
that fy(A) ≤ fy(C(α,M1,M2)).
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Using this result in inequality 4.18, we get that there exist constants C(α,M1,M2) >
0 and C1(α,M1,M2) > 0 such that:

‖q1 − q2‖L2(K) ≤
1

m

C(α,M1,M2)(
ln

(
C1(α,M1,M2)

‖u‖L2(Γe)2+‖p‖L2(Γe)+‖ ∂u∂n‖L2(Γe)2
+‖ ∂p∂n‖L2(Γe)

)) 1
2

.

Since
∂u

∂n
= pn on Γe, we obtain the desired inequality.

Remark 4.9. Note that the assumption that |u1| ≥ m > 0 on K is essential to pass
from 4.16 to 4.17. Outside the set K, an estimate of q1 − q2 may be undetermined
or highly unstable. In particular, an estimate of the Robin coefficients on the whole
set Γ0 might be worst than of logarithmic type (see [10]).

Note however that for a simplified problem, it is in fact possible to obtain a
logarithmic stability estimate on the whole set Γ0 which does not depend on a
given reference solution. Assume that g = gen and q ∈ R are such that

(A) ge ∈ R satisfies β ≤ ge ≤M1,
(B) α ≤ q ≤M2,

for some α > 0, β > 0, M1 > 0 and M2 > 0.
We denote by (uge,q, pge,q) the solution of system 4.4 associated to q and g = gen.
Thanks to the weak formulation of the problem,

∫
Γe
ug,q ·n > 0. Moreover, one can

prove by contradiction and thanks to the continuity of the solution with respect to
the data that there exists m1 > 0 which depends on M1, M2, α and β such that for
all (ge, q) ∈ R2 which satisfies (A) and (B),∫

Γe

uge,q · n ≥ m1.

For i = 1, 2, let qi ∈ R satisfy the assumption (B) above. We define by (ui, pi) =
(uge,qi , pge,qi) the solution of system 4.4 associated with g = gen and q = qi for
i=1,2. If we multiply 4.16 by the unit normal n and we integrate on Γ0, we obtain:

(q2 − q1)

∫
Γ0

u1 · n = q2

∫
Γ0

(u1 − u2) · n+

∫
Γ0

(
∂u1

∂n
− ∂u2

∂n

)
· n−

∫
Γ0

(p1 − p2).

Since u1 is divergence free,

∣∣∣∣∫
Γ0

u1 · n
∣∣∣∣ =

∣∣∣∣∫
Γe

u1 · n
∣∣∣∣ ≥ m1. Thus, we get

|q1 − q2|

≤C(M1,M2, α, β)

(
‖u1 − u2‖L2(Γ0)2 +

∥∥∥∥∂u1

∂n
− ∂u2

∂n

∥∥∥∥
L2(Γ0)2

+ ‖p1 − p2‖L2(Γ0)

)
.

We conclude as in the proof of Theorem 4.3 and obtain that positive constants
C(M1,M2, α) and C1(M1,M2, α, β) such that

|q1 − q2| ≤
C(M1,M2, α, β)(

ln

(
C1(M1,M2,α)

‖u1−u2‖L2(Γe)2+‖p1−p2‖L2(Γe)+‖ ∂p1
∂n −

∂p2
∂n ‖L2(Γe)

)) 1
2

.

4.3. Evolution problem. In order to use semigroup properties, we begin by in-
troducing the Stokes operator associated with the Robin boundary conditions on
Γ0.
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4.3.1. Properties of the Stokes operator. We recall that the bilinear form aq is de-
fined by 2.3.

Definition 4.10. We define the set D(Aq) as follows:

D(Aq) = {u ∈ V/∃C > 0,∀v ∈ V, |aq(u, v)| ≤ C‖v‖L2(Ω)2},
and the operator Aq : D(Aq) ⊂ H → H by:

∀u ∈ D(Aq), aq(u, v) = (Aqu, v)L2(Ω)2 ,∀v ∈ V.

Proposition 4.11. Let α > 0 and q ∈ L∞(Γ0) such that q ≥ α almost everywhere
on Γ0. The operator Aq has the following properties:

1. Aq ∈ L(D(Aq), H) is invertible and its inverse is compact on H.
2. Aq is selfadjoint.

As a consequence, Aq admits a family of eigenvalues φlq

Aqφ
l
q = λlqφ

l
q with 0 < λ1

q ≤ λ2
q ≤ ... ≤ λjq and lim

j→∞
λjq = +∞,

which is complete and orthogonal both in H and V .

Proof of Proposition 4.11. It relies on classical arguments for which we refer to [6]
or [7].

Remark 4.12. Let α > 0. There exists a constants µ > 0 such that for all
q ∈ L∞(Γ0) such that q ≥ α, for l ∈ N:

λlq ≥ µ. (4.19)

Indeed, λlq ≥ λ1
q = (Aqφ

1
q, φ

1
q)L2(Ω)2 = aq(φ

1
q, φ

1
q) ≥ aα(φ1

q, φ
1
q) ≥ µ‖φ1

q‖2L2(Ω)2 = µ,

where µ is the coercivity constant associated with the bilinear form aα.

Proposition 4.13. The operator A
1
2
q : (V, aq(., .)

1
2 ) → (H, ‖ ‖L2(Ω)2) is an isome-

try.

Proposition 4.14. Let α > 0 and q ∈ L∞(Γ0) be such that q ≥ α almost ev-
erywhere on Γ0. The operator −Aq generates an analytic semigroup on H. This
analytic semigroup is explicitly given by:

e−tAqf =
∑
l≥1

e−tλ
l
q (φlq, f)L2(Ω)2φlq, (4.20)

for all f ∈ H.

Proof of Proposition 4.14. It follows from the construction of the operator Aq. We
refer to [8] and [9] for details.

Proposition 4.15. Let α > 0, M > 0, k ∈ N and s ∈ R be such that s > d−1
2 and

s ≥ 1
2 + k. We assume that Ω is of class Ck+1,1 and that q ∈ Hs(Γ0) is such that

q ≥ α on Γ0.
Then for each f ∈ H ∩Hk(Ω)2, there exists u ∈ Hk+2(Ω)2 solution of Aqu = f

if and only if there exists p ∈ Hk+1(Ω) such that (u, p) is solution of the following
problem: 

−∆u+∇p = f, in Ω,
div u = 0, in Ω,
∂u
∂n − pn = 0, on Γe,

∂u
∂n − pn+ qu = 0, on Γ0.

(4.21)
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Moreover, there exists a constant C(α,M) > 0 such that for every q ∈ Hs(Γ0)
satisfying ‖q‖Hs(Γ0) ≤M :

‖u‖H2+k(Ω)2 ≤ C(α,M)‖f‖Hk(Ω)2 .

Proof of Proposition 4.15. This result follows from the construction of the operator
Aq and from Proposition 2.4.

Corollary 4.16. Let α > 0, k ∈ N∗ and s ∈ R be such that s > d−1
2 and s ≥

1
2 + 2(k − 1). We assume that Ω is of class C2k−1,1 and that q ∈ Hs(Γ0) is such
that q ≥ α on Γ0.

Then D(Akq ) ↪→ H2k(Ω)2 ∩H.

Proof of Corollary 4.16. For k = 1, it is clear. Take now k = 2. Let u ∈ D(A2
q).

We have

A2
qu = f ⇔

{
Aqu = v
Aqv = f

But v ∈ D(Aq) ⊂ H2(Ω)2∩H by assumption, so u ∈ H4(Ω)2∩H thanks to the regu-
larity properties of the solution of the Stokes problem summarize in Proposition 2.4.
We conclude by induction on k.

Remark 4.17. Let us remark that, due to the prescribed boundary conditions,
D(Aq) is not equal to H2(Ω)2 ∩H.

4.3.2. The flux g does not depend on t. In this paragraph, we consider the evolution
problem 1.1 given in the introduction. We assume in this part that g does not
depend on time. Let α > 0, M1 > 0 and M2 > 0. In the following, we assume that

g ∈ H 5
2 (Γe)

2 is non identically zero and ‖g‖
H

5
2 (Γe)2

≤M1, (4.22)

q ∈ H 5
2 (Γ0) is such that ‖q‖

H
5
2 (Γ0)

≤M2 and q ≥ α on Γ0. (4.23)

Let us prove the following theorem:

Theorem 4.18. Let α > 0, M1 > 0, M2 > 0 and u0 ∈ H ∩H3(Ω)2. We assume
that g satisfies 4.22 and that qj satisfies 4.23 for j = 1, 2. We denote by (uj , pj)
the solution of system 1.1 associated to q = qj, for j = 1, 2. Let K be a compact
subset of {x ∈ Γ0/v1(x) 6= 0}, where (v1, ζ1) is the solution of system 4.4 with
q = q1 and let m > 0 be a constant such that |v1| ≥ m on K. Then, there exist
C(α,M1,M2) > 0 and C1(M1,M2, α) > 0 such that

‖q1 − q2‖L2(K) ≤
1

m

C(α,M1,M2)(
ln

(
C1(M1,M2,α)

‖u1−u2‖L∞(0,+∞;L2(Γe)2)+‖p1−p2‖L∞(0,+∞;L2(Γe))+‖ ∂p1
∂n −

∂p2
∂n ‖L∞(0,+∞;L2(Γe))

)) 1
2

.

Remark 4.19. Due to the method which relies on semigroup theory, we need to
take measurements during an infinite time.

Proof of Theorem 4.18. For j = 1, 2, let (vj , ζj) be the solution of the stationary
problem 4.4 with q = qj . According to Proposition 2.4, (vj , ζj) belongs to H4(Ω)2×
H3(Ω) and moreover, thanks to assumptions 4.22 and 4.23, there exists a constant
C(α,M1,M2) > 0 such that

‖vj‖H4(Ω)2 + ‖ζj‖H3(Ω) ≤ C(α,M1,M2). (4.24)
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We denote (wj , πj) = (uj − vj , pj − ζj). Thanks to Theorem 4.3, we are able
to estimate ‖q1 − q2‖L2(K) with respect to an increasing function of (v1 − v2)|Γe ,

(ζ1 − ζ2)|Γe and
(
∂ζ1
∂n −

∂ζ2
∂n

)
|Γe

. Our objective is now to compare the asymptotic

behavior of u1 − u2 and p1 − p2 to the solution of the stationary problem v1 − v2

and ζ1 − ζ2. More precisely, we are going to prove that:

‖wj(t, .)‖H3(Ω)2 + ‖πj(t, .)‖H2(Ω) ≤ G(t),

where G is a function which tends to 0 when t goes to +∞. This inequality,
combined with Theorem 4.3, will allow us to conclude the proof of Theorem 4.18.

We have that (wj , πj) is the solution of the following problem: for t > 0,

∂tw −∆w +∇π = 0, in Ω,
div w = 0, in Ω,
∂w

∂n
− πn = 0, on Γe,

∂w

∂n
− πn+ qjw = 0, on Γ0,

completed with the initial condition w(0) = u0 − vj . Let t > 0. We have from the
theory of analytic semigroup that:

wj(t, .) = e−tAqjwj(0, .). (4.25)

Let η > 0. There exists a constant C > 0 independent of qj such that:

‖Aηqje
−tAqj ‖ ≤ C e

−µt

tη
, t > 0, η > 0, (4.26)

where µ is given by 4.19 and where ‖ ‖ is the norm operator. Using regularity result
for the stationary problem given in Proposition 2.4, we have that:

‖wj(t, .)‖H3(Ω)2 + ‖πj(t, .)‖H2(Ω) ≤ C(α,M2)‖∂twj(t, .)‖H1(Ω)2 .

Note that, thanks to Proposition 4.15 we have:

‖∂twj(t, .)‖H1(Ω)2 = ‖Aqjwj(t, .)‖H1(Ω)2 .

Then, since wj(t, .) is given by 4.25, and using Proposition 4.13 and estimates 4.24
and 4.26 with η = 3

2 , it follows:

‖wj(t, .)‖H3(Ω)2 + ‖πj(t, .)‖H2(Ω) ≤ C(α,M2)‖A
3
2
q e
−tAqjwj(0, .)‖L2(Ω)2

≤ C(α,M2)
e−µt

t
3
2

(
‖u0‖L2(Ω)2 + ‖vj‖L2(Ω)2

)
≤ C(α, u0,M1,M2)

e−µt

t
3
2

.

(4.27)

We have from 4.27:

‖v1 − v2‖L2(Γe)2 ≤ C(α, u0,M1,M2)
e−µt

t
3
2

+ ‖u1 − u2‖L∞(0,+∞;L2(Γe)2).

Then, passing to the limit when t goes to infinity, we get:

‖v1 − v2‖L2(Γe)2 ≤ ‖u1 − u2‖L∞(0,+∞;L2(Γe)2).

We prove similarly:

‖ζ1 − ζ2‖L2(Γe) ≤ ‖p1 − p2‖L∞(0,+∞;L2(Γe)),
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and ∥∥∥∥∂ζ1∂n
− ∂ζ2
∂n

∥∥∥∥
L2(Γe)

≤
∥∥∥∥∂p1

∂n
− ∂p2

∂n

∥∥∥∥
L∞(0,+∞;L2(Γe))

.

To summarize, we have obtained:

‖v1 − v2‖L2(Γe)2 + ‖ζ1 − ζ2‖L2(Γe) +

∥∥∥∥∂ζ1∂n
− ∂ζ2
∂n

∥∥∥∥
L2(Γe)

≤ ‖u1−u2‖L∞(0,+∞;L2(Γe)2)+‖p1−p2‖L∞(0,+∞;L2(Γe))+

∥∥∥∥∂p1

∂n
− ∂p2

∂n

∥∥∥∥
L∞(0,+∞;L2(Γe))

.

Applying Theorem 4.3 to (vj , ζj) for j = 1, 2, we obtain the existence of positive
constants C(M1,M2, α) and C1(M1,M2, α) such that

‖q1 − q2‖L2(K) ≤
1

m

C(M1,M2, α)(
ln

(
C1(M1,M2,α)

‖v1−v2‖L2(Γe)2+‖ζ1−ζ2‖L2(Γe)+‖ ∂ζ1∂n − ∂ζ2∂n ‖L2(Γe)

)) 1
2

.

We conclude by using the fact that the function x→ 1

ln
(

1
x

) increases on R∗+.

Remark 4.20. Remark that

(uj , pj) ∈ L∞(0,+∞;H3(Ω)2)× L∞(0,+∞;H2(Ω)). (4.28)

Let us prove 4.28. Let ν > 0. In fact, thanks to equation 4.27, we obtain that

(wj , πj) ∈ L∞(ν,+∞;H3(Ω)2)× L∞(ν,+∞;H2(Ω)),

and since uj = wj + vj and pj = πj + ζj , we deduce that

(uj , pj) ∈ L∞(ν,+∞;H3(Ω)2)× L∞(ν,+∞;H2(Ω)).

Moreover, thanks to Corollary 2.7, we have

(uj , pj) ∈ L∞(0, ν;H3(Ω)2)× L∞(0, ν;H2(Ω)).

Thus, 4.28 follows.

4.3.3. The flux g depends on t. We restrict our study to the case where g is colinear
to the exterior unit normal n: g = κ n.
Let α > 0, M1 > 0 and M2 > 0. We assume that:

κ ∈ H2
loc(0,+∞;H

3
2 (Γe)), (4.29)

and

q ∈ H 5
2 (Γ0) is such that ‖q‖

H
5
2 (Γ0)

≤M2 and q ≥ α on Γ0. (4.30)

Let us introduce h such that:

h ∈ H 5
2 (Γe) is non identically zero and ‖h‖

H
5
2 (Γ0)

≤M1. (4.31)

We assume that:

lim
t→∞

(‖κ(t, .)− h‖
H

3
2 (Γe)

+ ‖∂tκ(t, .)‖
H

3
2 (Γe)

+

(∫ t

0

e−µ(t−s)‖∂tκ(s, .)‖2
H

3
2 (Γe)

ds

) 1
2

) = 0,
(4.32)

where µ is given by equation 4.19.
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Theorem 4.21. Let α > 0, M1 > 0, M2 > 0 and u0 ∈ H3(Ω)2 ∩H. We assume
that h and κ satisfy respectively 4.31 and 4.29 and for j = 1, 2, qj satisfies 4.30.
We denote by (uj , pj) the solution of system 1.1 associated to q = qj. Let K be a
compact subset of {x ∈ Γ0/v1(x) 6= 0}, where (v1, ζ1) is the solution of

−∆v +∇ζ = 0, in Ω,
div v = 0, in Ω,
∂v

∂n
− ζn = hn, on Γe,

∂v

∂n
− ζn+ q1v = 0, on Γ0,

and let m > 0 be a constant such that |v1| > m on K. We assume that 4.32 is
verified. Then there exist C(α,M1,M2) > 0 and C1(α,M1,M2) > 0 such that

‖q1 − q2‖L2(K) ≤
1

m

C(α,M1,M2)(
ln

(
C1(α,M1,M2)

‖u1−u2‖L∞(0,+∞;L2(Γe)2)+‖p1−p2‖L∞(0,+∞;L2(Γe))+‖ ∂p1
∂n −

∂p2
∂n ‖L∞(0,+∞;L2(Γe))

)) 1
2

.

Remark 4.22. Let l ∈ H2
loc(0,+∞;H

3
2 (Γe)) and h ∈ H 3

2 (Γe). Assume that there
exists θ > 0 such that:

sup
t≥0

etθ
(
‖l(t, .)‖

H
3
2 (Γe)

+ ‖∂tl(t, .)‖
H

3
2 (Γe)

)
< +∞,

Then κ = h + l satisfies 4.32. We note that a particular case of function satisfy-
ing 4.32 is given by l(t, x) = ω(t)ρ(x) where ω ∈ H2

loc(0,+∞) , ρ ∈ H 3
2 (Γe) and

limt→∞ etθω(t) = limt→∞ etθω′(t) = 0.

Proof of Theorem 4.21. For j = 1, 2, we decompose uj into uj = vj + wj where
(vj , ζj) ∈ H4(Ω)2 ×H3(Ω) is the solution of the stationary problem:

−∆v +∇ζ = 0, in Ω,
div v = 0, in Ω,
∂v

∂n
− ζn = hn, on Γe,

∂v

∂n
− ζn+ qjv = 0, on Γ0,

and (wj , πj) is solution of the following problem:

∂tw −∆w +∇π = 0, in (0,+∞)× Ω,
div w = 0, in (0,+∞)× Ω,
∂w

∂n
− πn = (κ− h)n, on (0,+∞)× Γe,

∂w

∂n
− πn+ qjw = 0, on (0,+∞)× Γ0,

w(0, x) = u0(x)− vj(x), in Ω.

We would like to perform the same reasoning as in Theorem 4.18. More precisely,
we are going to prove that:

‖wj(t, .)‖H3(Ω)2 + ‖πj(t, .)‖H2(Ω) ≤ G(t),

where G is a function which tends to 0 when t goes to +∞. Since the function κ
depends on t, there will be one more step than in Theorem 4.18 and that is why we
assume 4.32.



22 MURIEL BOULAKIA, ANNE-CLAIRE EGLOFFE AND CÉLINE GRANDMONT

We divide (wj , πj) into two terms: wj = u0
j + w̃j and πj = p0

j + π̃j , where (u0
j , p

0
j )

is solution of

∂tu
0 −∆u0 +∇p0 = 0, in (0,+∞)× Ω,
div u0 = 0, in (0,+∞)× Ω,

∂u0

∂n
− p0n = (κ− h)n, on (0,+∞)× Γe,

∂u0

∂n
− p0n+ qju

0 = 0, on (0,+∞)× Γ0,

u0(0, x) = 0, in Ω,

and (w̃j , π̃j) is solution of

∂tw̃ −∆w̃ +∇π̃ = 0, in (0,+∞)× Ω,
div w̃ = 0, in (0,+∞)× Ω,
∂w̃

∂n
− π̃n = 0, on (0,+∞)× Γe,

∂w̃

∂n
− π̃n+ qjw̃ = 0, on (0,+∞)× Γ0,

w̃(0, x) = u0(x)− vj(x), in Ω.

Let t > 0. Using the same arguments as in the previous subsection, we prove that
there exists C(α, u0,M1,M2) > 0 such that:

‖w̃j(t, .)‖H3(Ω)2 + ‖π̃j(t, .)‖H2(Ω) ≤ C(α, u0,M1,M2)
e−µt

t
3
2

. (4.33)

It remains for us to bound ‖u0
j (t, .)‖H3(Ω)2 and ‖p0

j (t, .)‖H2(Ω). We are going to
prove that there exists a constant C(α,M2) > 0 such that:

‖u0
j (t, .)‖H3(Ω)2 + ‖p0

j (t, .)‖H2(Ω)

≤C(α,M2)

(∫ t

0

e−µ(t−s)‖∂tκ(s, .)‖2
H

3
2 (Γe)

ds

) 1
2

+ C(α,M2)‖∂tκ(t, .)‖
H

3
2 (Γe)

+ C(α,M2)
(
‖κ(t, .)− h‖

H
3
2 (Γe)

+ e−µt‖κ(0, .)− h‖
H

3
2 (Γe)

)
.

(4.34)

If inequality 4.34 is satisfied, we can end the proof of Theorem 4.21:

‖w1(t, .)− w2(t, .)‖H3(Ω)2 ≤ ‖u0
1(t, .)− u0

2(t, .)‖H3(Ω)2 + ‖w̃1(t, .)− w̃2(t, .)‖H3(Ω)2 ,

‖π1(t, .)− π2(t, .)‖H2(Ω) ≤ ‖p0
1(t, .)− p0

2(t, .)‖H2(Ω) + ‖p̃1(t, .)− p̃2(t, .)‖H2(Ω),

and in the following two estimates, the right hand side tends to 0 when t goes to
infinity thanks to inequalities 4.33 and assumption 4.32.

We introduce (yj , ρj) the solution of

−∆y +∇ρ = 0, in Ω,
div y = 0, in Ω,
∂y

∂n
− ρn = (κ− h)n, on Γe,

∂y

∂n
− ρn+ qjy = 0, on Γ0,

for all t > 0. We know that (yj(t, .), ρj(t, .)) ∈ H3(Ω)2×H2(Ω) and satisfies, thanks
to Proposition 2.4:

‖yj(t, .)‖H3(Ω)2 + ‖ρj(t, .)‖H2(Ω) ≤ C(α,M2)‖κ(t, .)− h‖
H

3
2 (Γe)

. (4.35)
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Remark that yj(t, .) belongs to D(A
3
2
qj ). Indeed, there exists a unique p̃(t, .) ∈ H3(Ω)

solution of  ∆p̃ = 0, in Ω,
p̃ = κ− h, on Γe,
p̃ = 0, on Γ0,

(4.36)

for all t > 0 and there exists a constant C > 0 such that

‖p̃(t, .)‖H3(Ω) ≤ C‖κ(t, .)− h‖
H

3
2 (Γe)

. (4.37)

Then (yj , ρj + p̃) satisfies

−∆yj +∇(ρj + p̃) = ∇p̃, in Ω,
div yj = 0, in Ω,

∂yj
∂n
− (ρj + p̃)n = 0, on Γe,

∂yj
∂n
− (ρj + p̃)n+ qjy = 0, on Γ0,

for all t > 0. Remark that, since ∇p̃ ∈ L2(Ω), we have that yj(t) ∈ D(Aqj ) by
definition of D(Aqj ). Notice that the fact that g is colinear to n is important
here to do the change of variable in the pressure. We deduce from Aqjyj(t) =

∇p̃(t) ∈ V = D(A
1
2
qj ) that yj(t) ∈ D(A

3
2
qj ). Moreover, using Proposition 4.13 and

inequality 4.37, there exists a constant C(M2) > 0 such that:

‖A
3
2
qjyj(t, .)‖L2(Ω)2 ≤C(M2)‖Aqjyj(t, .)‖H1(Ω)2 = C(M2)‖∇p̃(t)‖H1(Ω)2

≤C(M2)‖κ(t, .)− h‖
H

3
2 (Γe)

,
(4.38)

that is to say:

‖yj(t, .)‖
D(A

3
2
qj

)
≤ C(α,M2)‖κ(t, .)− h‖

H
3
2 (Γe)

. (4.39)

We can use the same argument, replacing κ − h by ∂tκ, to prove that ∂tyj(t, .) ∈
D(A

3
2
qj ) together with the estimate

‖∂tyj(t, .)‖
D(A

3
2
qj

)
≤ C(α,M2)‖∂tκ(t, .)‖

H
3
2 (Γe)

. (4.40)

Let us consider wj = u0
j − yj and pj = p0

j − ρj . The couple (wj , pj) is solution of

∂tw −∆w +∇p = −∂tyj , in (0,+∞)× Ω,
div w = 0, in (0,+∞)× Ω,
∂w

∂n
− pn = 0, on (0,+∞)× Γe,

∂w

∂n
− pn+ qjw = 0, on (0,+∞)× Γ0,

w(0, x) = −yj(0, x), in Ω.

(4.41)

We know that wj is given by:

wj(t, .) = −e−tAqj yj(0, .)−
∫ t

0

e−(t−s)Aqj ∂tyj(s, .)ds.

Using the family (φlqj )l≥1 defined by Proposition 4.11, we have: wj(t, .) =
∑
l≥1 Cl(t)φ

l
qj ,

with

Cl(t) = −e−tλ
l
qj (yj(0, .), φ

l
qj )L2(Ω)2 −

∫ t

0

e
−(t−s)λlqj (∂tyj(s, .), φ

l
qj )L2(Ω)2ds.
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Thus, recalling that (λlqj )l≥1 satisfies 4.19 and using Cauchy-Schwarz inequality,
there exists C > 0 such that:

Cl(t)
2 ≤ 2e−2tµ(yj(0, .), φ

l
qj )

2

L2(Ω)2
+ C

∫ t

0

e−(t−s)µ(∂tyj(s, .), φ
l
qj )

2

L2(Ω)2
ds.

We obtain from estimates 4.39 and 4.40:

‖wj(t, .)‖
D(A

3
2
qj

)
≤C(α,M2)e−µt‖κ(0, .)− h‖

H
3
2 (Γe)

+ C(α,M2)

(∫ t

0

e−µ(t−s)‖∂tκ(s, .)‖2
H

3
2 (Γe)

ds

) 1
2

.

(4.42)

Remark that, thanks to Proposition 4.15 and Proposition 4.13, we have:

‖wj(t, .)‖H3(Ω)2 ≤ C(α,M2)‖Awj(t, .)‖H1(Ω)2

≤ C(α,M2)‖A 3
2wj(t, .)‖L2(Ω)2 ≤ C(α,M2)‖wj(t, .)‖

D(A
3
2
qj

)
.

(4.43)

To summarize, using 4.43 and 4.42, we obtain the estimate:

‖wj(t, .)‖H3(Ω)2 ≤C(α,M2)e−µt‖κ(0, .)− h‖
H

3
2 (Γe)

+ C(α,M2)

(∫ t

0

e−µ(t−s)‖∂tκ(s, .)‖2
H

3
2 (Γe)

ds

) 1
2

.
(4.44)

Using now the regularity result for the stationary problem given in Proposition 2.4,
we have:

‖pj(t, .)‖H2(Ω) ≤ C(α,M2)
(
‖∂tyj(t, .)‖H1(Ω)2 + ‖∂twj(t, .)‖H1(Ω)2

)
.

Since Aqjwj = −∂tyj − ∂twj , we obtain:

‖pj(t, .)‖H2(Ω) ≤ C(α,M2)
(
‖∂tyj(t, .)‖H1(Ω)2 + ‖Aqjwj(t, .)‖H1(Ω)2

)
.

Thanks to Proposition 4.13, we know that

‖Aqjwj(t, .)‖H1(Ω)2 ≤ C(α)‖A
3
2
qjwj(t, .)‖L2(Ω)2 .

Therefore, using 4.40 and 4.42, we obtain:

‖pj(t, .)‖H2(Ω) ≤C(α,M2)
(
e−µt‖κ(0, .)− h‖

H
3
2 (Γe)

+ ‖∂tκ(t, .)‖
H

3
2 (Γe)

)
+ C(α,M2)

(∫ t

0

e−µ(t−s)‖∂tκ(s, .)‖2
H

3
2 (Γe)

ds

) 1
2

.

(4.45)

The estimate 4.34 follows from u0
j = wj+yj , p

0
j = wj+ρj and inequalities 4.35, 4.44

and 4.45.

4.4. Conclusion. To conclude, we have proved, under some regularity assumptions
on the open set Ω and on the solution (u, p) of system 1.1, logarithmic stability esti-
mates for the Stokes system with mixed Neumann and Robin boundary conditions.
Due to the method which relies on a global Carleman inequality proved in [11],
these estimates are valid in dimension 2.

Our result which, as far as we know, is the first result of this type for Stokes
system, could be improved in different ways. A first concern could be to prove
a logarithmic stability estimate which is valid in any dimension. This will be the
subject of a forthcoming work. Next, as mentioned in Remark 4.9, Robin coefficients
are estimated on a compact subset K ⊂ Γ0 which is not a fixed inner portion of Γ0

but is unknown and depends on a given reference solution. To obtain an estimate of
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Robin coefficients on the whole set Γ0 or on any compact subset K ⊂ Γ0 is still an
open question. Finally, in our stability estimates, we need measurements on Γe of

u, p and
∂p

∂n
, while the identifiability result given by Proposition 3.3 only requires

information on u and
∂u

∂n
− pn on Γ, where Γ ⊆ Γe is a non-empty open subset of

the boundary. Therefore, it might be interesting to know whether it is possible to
obtain a stability inequality with less measurement terms.

Appendix A. Existence and uniqueness for the unsteady problem. We
study the regularity of the solution of the unsteady problem:

∂tu−∆u+∇p = 0, in (0, T )× Ω,
div u = 0, in (0, T )× Ω,
∂u

∂n
− pn = g, on (0, T )× Γe,

∂u

∂n
− pn+ qu = 0, on (0, T )× Γ0,

u(0, ·) = u0, in Ω.

where q only depends on the space variable. We are going to prove Theorem 2.6.
First of all, as a preliminary result, we prove the following existence result:

Proposition A.1. Let T > 0, α > 0 and u0 ∈ H. We assume that g ∈ L2(0, T ;L2(Γe)
d)

and that q ∈ L∞(Γ0) is such that q ≥ α on Γ0. There exists u ∈ L2(0, T ;V ) such
that for all v ∈ V , we have in the distribution sense on (0, T ):

d

dt

∫
Ω

u · v +

∫
Ω

∇u : ∇v +

∫
Γ0

qu · v =

∫
Γe

g · v, (A.1)

and for all v ∈ V , ∫
Ω

u(0) · v =

∫
Ω

u0 · v. (A.2)

Proof of Proposition A.1. We begin by proving, using a Galerkin method, that
there exists u ∈ L2(0, T ;V ) such that

∀v ∈ V,∀ψ ∈ C1(0, T ) such that ψ(T ) = 0

−
∫ T

0

∫
Ω

u(t, x) · v(x)ψ′(t)dxdt+

∫ T

0

∫
Ω

∇u(t, x) : ∇v(x)ψ(t)dxdt

+

∫ T

0

∫
Γ0

q(x)u(t, x) · v(x)ψ(t)dxdt− ψ(0)

∫
Ω

u0(x) · v(x)dx

=

∫ T

0

∫
Γe

g(t, x) · v(x)ψ(t)dxdt.

(A.3)

Let (wi)i∈N∗ be a Hilbert basis of V which is also an orthogonal basis of H. For
each n ∈ N∗, we define an approximate solution as follows: we search un ∈ Vn =

Span
{

(wi)1≤i≤n

}
which satisfies

∫
Ω

un,t · wj +

∫
Ω

∇un : ∇wj +

∫
Γ0

qun · wj =

∫
Γe

g · wj ,∀j ∈ {1, . . . , n},

un(0) =

n∑
k=1

(u0, wk)L2(Ω)dwk,

(A.4)
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where un,t denotes ∂tun.

Let t ∈ (0, T ). We decompose un(t, .) in the Hilbert basis:

un(t, .) =

n∑
i=1

ξi(t)wi.

We denote by

A =

(∫
Ω

wi(x) · wj(x)dx

)
1≤i,j≤n

B =

(∫
Ω

∇wi(x) : ∇wj(x) +

∫
Γ0

q(x)wi(x) · wj(x)dx

)
1≤i,j≤n

ξ(t) = (ξi(t))1≤i≤n

and

L(t) =

(∫
Γe

g(t, x) · wi(x)dx

)
1≤i≤n

.

We can rewrite system A.4 in the form:{
Aξ′(t) +Bξ(t) = L(t),

ξ(0) = ((u0, wi)L2(Ω)d)1≤i≤n.

Since the matrix A is invertible, the system has a unique global solution ξ ∈
H1(0, T )d. We are now going to prove that there exists a constant C > 0 inde-
pendent of n ∈ N∗ such that:

sup
t∈(0,T )

∫
Ω

|un|2 +

∫ T

0

∫
Ω

|∇un|2 +

∫ T

0

∫
Ω

|un|2 ≤ C. (A.5)

Multiplying the first equation of A.4 by ξj , summing over j for j = 1, . . . , n and
then integrating on (0, t), we obtain:∫ t

0

∫
Ω

un,t · un +

∫ t

0

∫
Ω

|∇un|2 +

∫ t

0

∫
Γ0

q|un|2 =

∫ t

0

∫
Γe

g · un (A.6)

Let ε > 0. We have, thanks to Cauchy-Schwartz and Young inequalities:∫ t

0

∫
Γe

g · un ≤ C
∫ T

0

∫
Γe

|g|2 + ε

∫ t

0

∫
Γe

|un|2 ≤ C
∫ T

0

∫
Γe

|g|2 + ε

∫ t

0

‖un‖2H1(Ω)d .

Choosing ε small enough and using the fact that q ≥ α on Γ0, we obtain:

sup
t∈(0,T )

∫
Ω

|un|2 +

∫ T

0

∫
Ω

|∇un|2 +

∫ T

0

∫
Ω

|un|2 ≤ C

(∫ T

0

∫
Γe

|g|2 +

∫
Ω

|u0|2
)
.

(A.7)
This gives A.5. According to inequality A.5, there exists u ∈ L2(0, T ;V ) such that,
up to a subsequence,

un ⇀ u in L2(0, T ;V ).
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Let j ∈ N∗. Multiplying the first equation of A.4 by ψ ∈ C1(0, T ) such that ψ(T ) = 0
then integrating on (0, T ), we get, ∀n ≥ j:∫ T

0

∫
Ω

un,t(t, x) · wj(x)ψ(t)dxdt+

∫ T

0

∫
Γ0

q(x)un(t, x) · wj(x)ψ(t)dxdt

+

∫ T

0

∫
Ω

∇un(t, x) : ∇wj(x)ψ(t)dxdt =

∫ T

0

∫
Γe

g(t, x) · wj(x)ψ(t)dxdt.

(A.8)

Taking into account that:∫ T

0

∫
Ω

un,t(t, x) · wj(x)ψ(t)dxdt

=−
∫ T

0

∫
Ω

un(t, x) · wj(x)ψ′(t)dxdt−
∫

Ω

un(0, x) · wj(x)ψ(0)dx,

we easily pass to the limit when n goes to infinity in A.8. Remark that this inequality
is still valid if we replace wj by any v ∈ V by continuity. This ends the proof of the
existence of u ∈ L2(0, T ;V ) which satisfies A.1 in the distribution sense on (0, T ).

Let us finish the proof of Proposition A.1 by proving that the initial condition A.2
is satisfied. Let v ∈ V . We deduce from equality A.3 that d

dt (u, v)L2(Ω)d ∈ L2(0, T ).
Consequently, the function t → (u(t), v)L2(Ω)d is continuous. This gives a sense to

(u(0), v)L2(Ω)d . Let ψ ∈ C1(0, T ) such that ψ(T ) = 0. Multiplying A.1 by ψ and
then integrating on (0, T ), we obtain:

−
∫ T

0

(u, v)L2(Ω)dψ
′(t)dt+

∫ T

0

aq(u, v)ψ(t)dt

= (u(0, .), v)L2(Ω)dψ(0) +

∫ T

0

l(v)ψ(t)dt,

(A.9)

where we recall that aq is defined by 2.3 and with l(v) =

∫
Γe

g · v, for v ∈ V .

Comparing equality A.9 with equality A.3, we obtain ψ(0)(u(0, .)−u0, v)L2(Ω)d = 0,
for all v ∈ V . By choosing ψ such that ψ(0) 6= 0, equality A.2 follows.

We are now able to prove Theorem 2.6.

Proof of Theorem 2.6. We will begin by proving that ∂tu ∈ L2(0, T ;H), then we
will conclude by using the regularity result for the stationary problem from Propo-
sition 2.4.
Let t ∈ (0, T ). Multiplying the first equation of A.4 by ξ′j , summing over j for
j = 1, . . . , n and then integrating on (0, t), we obtain:∫ t

0

∫
Ω

|un,t|2 +

∫ t

0

∫
Γ0

qun · un,t +

∫ t

0

∫
Ω

∇un : ∇un,t =

∫ t

0

∫
Γe

g · un,t.

We have:∫ t

0

∫
Γe

g · un,t = −
∫ t

0

∫
Γe

∂tg · un −
∫

Γe

g(0) · un(0) +

∫
Γe

g(t) · un(t).
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Let ε > 0. Then, thanks to Cauchy-Schwarz and Young inequalities, there exists
C > 0:∣∣∣∣∫ t

0

∫
Γe

g · un,t
∣∣∣∣ ≤∫ T

0

∫
Γe

|∂tg|2 + ε

∫ T

0

‖un‖2H1(Ω)d + 2 sup
t∈(0,T )

∫
Γe

|g|2

+ ‖u0‖2H1(Ω)d + ε sup
t∈(0,T )

‖un‖2H1(Ω)d .

If we choose ε small enough, we finally obtain, using estimate A.7:

sup
t∈(0,T )

‖un‖2H1(Ω)d +

∫ T

0

‖un‖2H1(Ω)d +

∫ T

0

∫
Ω

|un,t|2

≤ C

(
‖u0‖2H1(Ω)d +

∫ T

0

∫
Γe

|∂tg|2 +

∫ T

0

∫
Γe

|g|2 + sup
t∈(0,T )

∫
Γe

|g|2
)
.

(A.10)

We deduce that (un)n∈N∗ is bounded in H1(0, T ;H) ∩ L∞(0, T ;V ) and therefore
u ∈ H1(0, T ;H) ∩ L∞(0, T ;V ).

To get regularity in space, we use the regularity result stated in Proposition 2.4 for
the stationary problem. To do so, we notice that, for all t ∈ (0, T ), (u(t), p(t)) is so-
lution of system 2.1 with f and g replaced by ∂tu(t) and g(t). So, by Proposition 2.4

applied with k = 0, since (∂tu, g) belongs to L2(0, T ;L2(Ω)d)× L2(0, T ;H
1
2 (Γe)

d),
we deduce that (u, p) ∈ L2(0, T ;H2(Ω)d)× L2(0, T ;H1(Ω)).

Let us now prove the uniqueness of solution. Assume that u1 and u2 are two
solutions and let w = u1 − u2. Then we have for all v ∈ V :∫

Ω

∂tw(t) · v +

∫
Ω

∇w(t) : ∇v +

∫
Γ0

qw(t) · v = 0, w(0) = 0. (A.11)

Taking v = w(t) in A.11, we find:

1

2

d

dt

∫
Ω

|w(t)|2 +

∫
Ω

|∇w(t)|2 +

∫
Γ0

q|w(t)|2 = 0,

that is to say ∫
Ω

|w(t)|2 ≤
∫

Ω

|w(0)|2 = 0, for all t ∈ (0, T ).

So u1 = u2 on (0, T )×Ω. To conclude, thanks to system 1.1, we obtain p1 = p2.
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[11] A. L. Bukhgĕım, Extension of solutions of elliptic equations from discrete sets, Journal of

Inverse and Ill-Posed Problems, 1 (1993), 17–32.
[12] G. Alessandrini, L. Del Piero and L. Rondi, Stable determination of corrosion by a single

electrostatic boundary measurement, Inverse Problems, 19 (2003), 973–984.
[13] A. Quarteroni and A. Veneziani, Analysis of a geometrical multiscale model based on the

coupling of ODEs and PDEs for blood flow simulations, Multiscale Modeling & Simulation,

1 (2003), 173–195.
[14] I. E. Vignon-Clementel, C. A. Figueroa, K. E. Jansen and C. A. Taylor, Outflow bound-

ary conditions for three-dimensional finite element modeling of blood flow and pressure in

arteries, Computer Methods in Applied Mechanics and Engineering, 195 (2006), 29–32.
[15] L. Baffico, C. Grandmont and B. Maury, Multiscale modeling of the respiratory tract, Math-

ematical Models & Methods in Applied Sciences, 1 (2010), 59–93.

[16] M. Bellassoued, J. Cheng and M. Choulli, Stability estimate for an inverse boundary coeffi-
cient problem in thermal imaging, Journal of Mathematical Analysis and Applications, 343

(2008), 328–336.

[17] S. Chaabane, I. Fellah, M. Jaoua and J. Leblond, Logarithmic stability estimates for a Robin
coefficient in two-dimensional Laplace inverse problems, Inverse Problems, 20 (2004), 47–59.

[18] J. Cheng, M. Choulli and J. Lin, Stable determination of a boundary coefficient in an elliptic
equation, Mathematical Models & Methods in Applied Sciences, 18 (2008), 107–123.

[19] S. Chaabane and M. Jaoua, Identification of Robin coefficients by the means of boundary

measurements, Inverse Problems, 15 (1999), 1425–1438.
[20] E. Sincich, Lipschitz stability for the inverse Robin problem, Inverse Problems, 23 (2007),

1311–1326.

[21] K. D. Phung, Remarques sur l’observabilité pour l’équation de Laplace, ESAIM: Control,
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