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Abstract

In this article, we are interested by the three-dimensional motion of an elastic structure immersed
in a viscous compressible fluid. The fluid and the structure are contained in a fixed bounded set. To
describe the structure motion, we choose an Eulerian point of view and we strongly regularize the
equation of the solid motion in order to get additional estimates on the elastic deformations. Our
maim result is an existence result of weak solutions defined as long as no collisions occur and as
long as conditions of non-interpenetration and of preservation of orientation are satisfied.
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Résumé

Dans cet article, nous étudions le mouvement d’'une structure élastique immergée dans un fluide
compressible en dimension trois. Le fluide et la structure sont contenus dans une cavité fixe bornée.
On prend un point de vue eulérien pour décrire le mouvement de la structure et les équations du
mouvement solide sont fortement régularisées afin d’obtenir des estimations supplémentaires sur les
déformations élastiques. Notre principal résultat est un résultat d’existence de solutions faibles défi-
nies tant qu'il n'y a pas de chocs entre la structure et la paroi de la cavité et tant que des conditions
de non-interpénétration et de préservation de 'orientation du solide sont satisfaites.
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1. Introduction and equations of motion

In this paper, we consider the motion of an elastic structure immersed in a viscous
compressible fluid described by the compressible Navier—Stokes equations. The fluid and
the structure are contained in a fixed boundedet R which is supposed to be regular
enough. We consider regularized elastic deformations for the structure and we prove an
existence result of weak solutions for this problem. Solutions are defined as long as there
is no collision and as long as conditions of non-interpenetration and of preservation of
orientation are satisfied by the displacement field of the structure.

For related works on models dealing with an elastic structure and an incompressible
fluid, we refer to [2,5,8,10] (see also references therein). The case of rigid structures im-
mersed in a compressible fluid is treated in [9]. The problem of interaction between a
compressible fluid and an elastic plate occupying a part of the fluid domain boundary is
considered in [14] and [15]. In these works, the fluid motion is modelled by an equation
which is linear in the velocity (the convective term is not considered). To the best of our
knowledge, we present in this paper the first existence result dealing with the interaction
between a compressible fluid modelled by the Navier—Stokes equation and an elastic struc-
ture.

To show our existence result, we follow the method introduced in the article [13] which
proves the global existence of weak solutions to the compressible Navier—Stokes equations.
This paper improves the existence result obtained in [19] which gives the first existence
result for compressible fluids without restrictions on the initial conditions or geometry of
the domain. The method presented in [13] has already been adapted to the case of a rigid
structure immersed in a compressible fluid in [12].

We denote by2s(7) the domain occupied by the structure a@d(¢) = 2 \ 25(¢) the
domain occupied by the fluid at time The fluid motion is governed by the compressible
Navier—Stokes equations:

0;(orup) +diviorur Qup)+Vp —divT =0 in2p(1), 1.1)

whereur denotes the Eulerian velocity, the pressure andyr the density. The stress
tensorT is defined by:

T=prVur+ Or+pr)divurld,
where the viscosity coefficients: andu r are such that
wr >0, 3ir+2uF 20,

The pressure and the density are functionally dependent and the relation between them is
given by the constitutive law:

p=agk.,

whereaq is a strictly positive constant and> 3/2 is the adiabatic constant. Moreover, the
densityor satisfies the continuity equation:
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o;0r +div(iopup) =0 ong(t). (1.2)

On the structure, we choose to keep this Eulerian point of view. We will see that this
choice consequently simplifies the writing of the global problem. For instance, this allows
to deal with test functions independent of the solution. Furthermore, as the Lagrangian
flow solution of the problem will be invertible, this Eulerian formulation will be equivalent
to a more usual Lagrangian formulation.
Letug be the Eulerian velocity of the structuigy the density of the structure arts

the Lagrangian flow. For all in [0, T'], for all y in 25(0), Xs(¢, 0, y) is the position at
timet of the particle located iy at initial time. The relation betweary andX g is: for all
y € £25(0),
{asz(l,O, y)=us(t, Xs(,0,y)), (1.3)

Xs5(0,0,y) =y '

If ug is enough regular (this will be satisfied by our solutioki, is well defined and for
eachr € (0, T), Xs(¢,0,.) is invertible from$25(0) on 25(¢), we denoteX (0, ¢, .) the
inverse. Next, we consider the following momentum equation:

0;(osus) +div(osus @ us) + 0Azus —dives =0 in 2s(2). (1.49)

The term@ Asug is a regularizing term; the regularizing paramedeis a fixed strictly
positive real number ands is the differential operator defined by: for ak= 1, 2, 3, for
all u regular enough,

3 3 4 3 6
1 de;.1(u) 9%u; 0°u;
Ay =—3y ———=+ -
i,j

. 2q..2 2q.2q..2°
2 P ax; —, 0 8xj ) x; ij axg

wheree (1) denotes the symmetric part of the gradieni: of
Thus, we haveYu, v e D(25(1))3,

/ Azuv = (u, V) g3(24(1))
2s(1)

where we have definetfu, v € H3(25(1))3,

@, V) 35y = / £u): 8(”)+Z / 9% ax ax; z;))lc
iOAj i04j

2s5() Li=L asn

331)1
+ Z / Bxlax] Bxk 0x;0x; oxp
i,j.k=1¢o (1)
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Thanks to this regularization, the flois will belong to H1(0, T; H3(25(0))). We can
notice, that if we only consider a rigid velocity on the structute, does not act on it.

Remark 1. Here, the abstract operatdr has no physical meaning: this term is added
because it is necessary to our study (we will explain later why we need this regularizing
term). However, in the theory of multipolar materials (see [21]), stress tensors with spatial
derivatives of high order are introduced with a physical interpretation: our regularizing
term corresponds to a tripolar material.

The Cauchy stress tenseg is expressed with respect to the second Piola—Kirchhoff
tensors s:

os(t,x) =detVXg(0,t, x)VXs(0, 1z, x)‘lfrs(t, Xs5(0,1,x))VX5(0,7,x)7",
Vx € 25(1),

and the constitutive law is the Saint-Venant—Kirchhoff law:

G5[Xs]=2usE(Xs) + Astr(E(Xs))ld, (1.5)
where the Lamé constants of the elastic mediand . g satisfy:
us >0, As +2us >0,

andE (X) is the Green—Saint-Venant tensor defined by:
1 t
E(Xs) = E( VXsVXg—Id).
At last, the evolution obg is given by the continuity equation:

d;0s +div(osus) =0 on2s(z). (1.6)

This system is completed by boundary conditions. As the fluid is viscous, the velocity is
continuous at the interface:
=0 o0nois2,
“r (1.7)
urp=us 0NI2s(t).

The second equation is a coupling equation between the fluid and the structure. The cou-
pling is also expressed by the continuity of the stress on the interface: for i, 7] and
forall v e C(0825(2)),
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/ (T—pldn, -v= / oshy - v —0{us, V)3 325() (1.8)
925(0) 325(1)

where the operatof., -)3 0, represents the contributing terms on the boundary of the
regularizing operatoAs: Yu, v € D(£25(1))3,

/ Azuv = ((u, v))H3(_QS(t)) + (4, v)3,925()-
£25(1)

Moreover, the vector, is the outwards unit normal @2(¢) at pointx. We denote by
the global Eulerian velocity and lyythe global density defined a2. Egs. (1.2) and (1.6)
are equivalent to,

d:0 +diviou) =0 in £2. (2.9)
At last, we prescribe initial date® in H3(£2), 02 in L>®(£25(0)) ande? in L” (27 (0)):

0% in 25(0),

1.1
0% in 2r(0). (1.10)

ut=0=u’ ing, Q(t=0)=90:{

Formally, the system given by equations (1.1)—(1.4) and (1.6) and boundary conditions
(1.7) and (1.8) satisfies an a priori energy estimate:

t
1 a
5/Q(r)|u(z);2dx+m f Q;(z)+wf/ |Vup(s)|2

Q Qp(t) 082r(s)

t

t
+(}"F+/LF)/ / |diqu(S)‘2+9/((MS(S)aMS(S)))HS(QS(S))

0025 (s) 0

A
+ s f |E(X5(t,0,y))|2dy+?s f Itr E(Xs(t,0, ) dy < Eo, (1.11)
25(0) 2500

whereEy is the initial energy,

Eoe 0,012 a / 0y
0 /Q|M| er—y_l (oF)

2 27 (0)

NI =

This comes in particular from the following calculation:
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/os:Vugdxz / Gst,y): [['VXst,0, )V, (us(t, Xs(t,0,y)))]dy
25() 25(0)

= / éS(tv)’)atE(XS(t»Osy))dy
25(0)

It is interesting to notice that if we choose the linearized elasticity law, the global system
does not satisfy an energy estimate. Next, we define the conceptarimalized solutions
introduced in [11] with slightly modified conditions on the admissible functions

Definition 1. The continuity equation (1.9) is satisfied in the senseenbrmalized solu-
tionsif, for any b € C1(R) such that

b'(z) =0 forz large enough, (1.12)

we have:

db(0) +div(b(o)u) + (b'(0)e — b())divu=0 inD'((0,T) x £2). (1.13)

Remark 2. The condition (1.12) on the admissible functions can be weakened. Indeed,
thanks to Lebesgue convergence theorem, we deduce that if (1.9) is satisfied in the sense
of renormalized solutions fa5 belonging toL>°(0, T'; L*(£2)) with & > 3/2, then (1.13)

holds for anyb in C1(R}) N C(R*) such that

b (2)z] < C(z*2+2%), Vz>0with6 < % (1.14)

Remark 3. We assume that the adiabatic constans$ greater than 2. This condition is
crucial in works dealing with compressible fluids. For instance, we can notice thd/2

is the critical value for which the convective term is defined almost everywhere. Indeed,
if o belongs toL>(0, T; LY (2)), asu belongs toL2(0, T'; L5(£2)), the convective term

ou ® u belongs toL1(0, T'; L?(£2)) for somep > 1 if and only ify > 3/2.

We close this section with the following definition which generalizes Sobolev spaces to
domains depending on time:

Definition 2. Let £2(0) C £2 be a regular domain and letd p, ¢ < oco. We define, for
eachr >0, 2(1) = X (1,0, £2(0)).

We will say thatu defined on$ belongs (respectively) td.?(0, T; LY($2(t))),
LP(O,T; W-4(2(1))), LP(0, T; W29 (2(1))) for 1 < g <6 0r LP(0, T; W34(82(1))) for
1< g <2, if uo X belongs (respectively) th? (0, T; L9 (£2(0))), L?(0, T; Wk4(£2(0))),
LP(0, T; W24(£2(0))) or LP(0, T; W34(£2(0))).
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2. Variational formulation and main result

We introduce the variational formulation of our problem. Déte the test function
space:

V={vec®(0,T) x 2)*|v(T)=0,v(,.) e H (2)3 Vi [0, T]}.  (2.1)
Definition 3. We will say that(X, o, u) is a weak solution of the problem (1.1) to (1.9) if:
() XseHY0,T: H3(25(0)))3 0 € L™(0, T, LY (2)), 0 >0,u € L?(0, T, H}(£2))°,
(ii) Eq. (1.3) is satisfied almost everywhere @ 7') x 225(0),

(i) the continuity equation (1.9) is satisfied in the sense of renormalized solutions,
(iv) the following weak formulation holds: for all € V,

T T
//Qu~8,vd.xdt+//g(u®u):Vvdxdt
0 02
T T T
—// GS:VU—G/ u(t), v(t) Hg(ﬂs(l))dt_// T:Vvdxdr
0

0R25(1) 0QF(t)

+a// QFdIVdedt /0u0~v(0,.)dy. (2.2)

02r(@)

Now, we give the main result of this paper:

Theorem 1.Letu® € H}(£2)3, p2 € L>(£2) and % € LY (27 (0)) satisfying
0< 0 < < QS(x) 0s, Vx € 25(0) and QF(x) >0,Vx € 2r(0). (2.3)
We suppose that(d£25(0), 3£2) > 0. Then there exists* > 0 depending only on the data
and# such that there exists at least one weak solution of the profletito (1.9)in the
sense of DefinitioB defined on(0, 7). This solution is defined until given by
T =sup{r>0|d(r) > 0,g(r) >0and Xs(z, 0, .) one-to-ong, (2.4)

where

d(t) =d(0825(t),052) and )= inf |detVXg(z,0,y)|.
(1) =d(3825(1), 82) HO! yegs<0)| 51,0,

Furthermore, this solution satisfies the energy estinfatil)
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Remark 4. We notice that

d(t)>d0)— sup |Xs(t,0,y0) — yol.
Yyo€Rs(0)

Thanks to the regularizing ternX,s belongs toH(0, T; L*(£25(0))) and is bounded by
a constant depending @nand Eg. Therefore,

d(t)>d0) — /1t ||XS||H1(0,T;L90(_QS(0))) >0,
for + small enough. Next, we notice that if:
|VXs@,0,.) —1d| L((0,T)x25(0) S €

wheree is small enoughX(z, 0, .) is invertible and the orientation is preserved, i.e.,

)= inf |detVXg(z,O, 0.
g(1) ye'gm‘ s, 0,y)| >

This will be satisfied during a small time if, for instance, we control the nornX gfin
H0, T; Wb (£25(0))). These two remarks justify the necessity of a regularization in
HY(0, T; Wt (£25(0))): we want to avoid physical situations which are not consistent
(non-preservation of orientation) or which we are not able to work out mathematically
(collision between the structure and the boundary or interpenetration).

3. Auxiliary results

3.1. Regularity results for a parabolic problem

In this paragraph, we give some regularity results which will be useful later. These
results are given in the very special case which interests us.

Definition 4. We will say that a bounded domai® is a set with ¥ (resp.C*) bound-
ary if, for each pointx € 952, there exists a neighborhodtlof x, a neighborhood of 0
and aw™-*-diffeomorphism (respC*-diffeomorphismy : V — U such that
O =x, ¥(W)=2nU, vEVH=enU,
with:
NoW) =V n{,xy) e RV xR | xy =0},

and:

V+=Vﬁ{(x’,xN)eRN_1xR|xN>0}.
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Proposition 1. Let £2 be a bounded open set Bf with aC? boundary. We consider the
following Neumann problem

oyw —div(BVw) +aw+c-Vw=f in(0,T) x £,
(BVw)-n=0 in (0,T) x 352, (3.1)
w(0) = wo in $2,

whereB is a symmetric matrix i€ (0, 7'; W6(£2)) uniformly coercive in space and time.

() We suppose thabg belongs toH?(£2), a belongs toL?(0, T; C(£2)), f belongs to
L2((0,T) x £2) and ¢ belongs toC((0, T) x £2)3, then our problem has a unique
solutionw in L2(0, T; H%(£2)) N HY(0, T; L?(£2)) and Eq.(3.1) is satisfied almost
everywhere ori0, T') x £2.

(i) We suppose thatg belongs toW 24 (£2) withg = 4/3, a belongs ta.2((0, T) x £2), f
belongs talL?((0, T) x £2) andc belongs taL2(0, T'; L*(£2))3. Moreover, we suppose
that our problem has a solutiom in L*(0, 7; H1(£2)). Then our solutionw belongs
in fact to WL9(0, T; L9(£2)) N L9(0, T; W24(£2)) and Eq.(3.1) is satisfied almost
everywhere ori0, T') x £2.

Proof. The first result is a classical result of regularity for a parabolic linear equation. The
second result derives from a maximal regularity resultiri(0, T) x £2) which is given
by [17, Chapter IV, Paragraph 9].0

Proposition 2. Let £2 be a bounded open set Bf with aC* boundary. We consider the
following problemfind w such that

T T T
—//wB,¢+//BVw~V¢+//c-Vw¢
0 0 0

T
Z/(f’d’)Hl(.Q)’le(Q) +/w0¢(0), (3.2)
0

2

holds for eachy € D((0, T) x £2) satisfying¢ (T) = 0. Here B is a symmetric matrix in
HY(0, T; wL8(£2)) uniformly coercive in space and time such tt#0) = Id. We suppose
that f belongs toL4(0, T; H1(£2)") with ¢ > 2, wg belongs toH1(£2) and ¢ belongs to

L2(0, T; L*(£2))3, then our problem has a unique solutienin L7 (0, T; H(£2)) where

T depends only on the norm 8fin H1(0, T; W16(02)).

Proof. First, we consider tha® = Id and we show that the following problem has a unique
solution: findv in L4(0, T; H1(§2)) such that
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T T T T
_// Uat¢+// VvVd)—i—//cVv¢=/(f,¢)H1(Q)/XH1(Q)+fwo¢(0),
02 02 0 0 2

holds for eaclp € D((0, T) x §2) satisfyinge (T) = 0.
We define an intermediary problem: findin L4(0, T; H1(£2)) such that for each
¢ € D((0, T) x £2) satisfyingp(T) =0,

T T T
0 0 0 9}

According to [1], this problem has a unique solution. Next, we define:v — v. Then,u
is solution of: for eaclp € D((0, T) x £2) such thatp(T) =0,

T T T T
—/fuBﬂﬁ—}—//Vu'V¢+//C-Vu¢=—//c~V17¢. (3.3)
0 £ 02 02 02

If we consider a sequence of functiofag) belonging toL.*°((0, T') x £2) which converges
tocin L2(0, T; L*°(£2)), we easily show that the problem (3.3) where we replabg ¢,
has a unique solutiom, in L2(0, T; H2(2))NHY(0, T; L?(£2)). Furthermore, a&,, - V)
is bounded inL” (0, T; L2(£2)) with 1 < r < 2, we have:

||Mn||Lr(o,T;H2(_Q)) + ||un||W1~r(0,T;L2(_Q)) < Cllcy - V77||L'"(0,T;L2(Q))'

From that, we easily deduce that the limit of the sequdngeg is the unique solution of
(3.3). Thereforey = u + o belongs toL” (0, T; H%(£2)) N W7 (0, T; L%(£2)) and conse-
quently toC(0, T; H1(£2)). Thus, in particulary belongs taL4(0, T; H1(£2)).

To prove that our initial problem (3.1) has a unique solutior.#{0, T; H1(£2)), we
use a fixed point argument. We consider the application:

S:L9(0,T; HY(2)) — L4(0,T; H(R2)), (3.4)

W w,

where w is solution of the variational problem: for eaghe D((0, T) x £2) such that
¢(T) =0,

T T T T
—// wasz‘i‘// vw‘V¢+//C'Vw¢=/<f’¢>H1(Q)’le(.Q)+/w0¢(0)
00 00 02 0 2
T
+/f(|d—B)vw-v¢.

0
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According to what precedes, we easily prove thias a contraction on an intervgo, T]
whereT depends only on the norm &fin H1(0, T; W1-8(£2)). This implies the existence
of a fixed point toS belonging toL7 (0, T; H1(£2)) which is the solution of (3.2). O

3.2. Regularity results for the Stokes system

This subsection is devoted to an auxiliary regularity result which will be useful in what
follows. We prove the existence of a solution to the Stokes problem for a right-hand side
belonging toL". Several papers deal with this regularity problem in different classes of
domain. In [7], the result is obtained for domains withboundary and in [3], the case of
domains withw2> boundary is treated. In both papers, the regularity result holds in
for each 1< r < oo. In our result, as the domain is less regular, we have to restrict the
possible values of.

Lemma 1. Let £2 be a bounded domain with W26 boundary. Assumé < r < 6. We
consider the following problem

—Av+Vp=f in(0,T)x £2,
divv=g in (0, T) x £2, (3.5)
v=ur in(0,T) x 052.

If felL(2),geWL(2),vre Wz‘%’r(aﬂ), then there exists a unique solution to
(3.5) (v, p) € W27 (2) x WL (£2)/R. Moreover,

||U||W2-r(9) + ||P||W1,r(9)/]R < C(”f”L'(Q) + ”g”Wlf(Q) + ”vF”WZ*l/"J(B_Q))’

whereC only depends o2 and onr.

Proof. This result is obtained by adapting the proof presented in [3]. We give a sketch
of the proof in this article and we will emphasize on the differences in our context. We
consider an arbitrary domai? with a W2® boundary. We follow the proof of [3]: first,

we can always suppose that = 0 by considering — ¢ instead ofv wherep € W27 (2)

is a lifting of v. Next, we considek open setd/; introduced in Definition 4 such that
32 C Ui Ui and we define a family; for 0 <i < k of functions belonging to

C*®(R3) such that

k
0<6 <1 ) 6=1 inR,

i=0
suppy; is a compact set supp; CU;, V1<i<k,
supplo C R3\ 92 and 6ple € C ().

The first step of this paper consists in proving that the result holds fo2. We define
(vi, pi) = (6;v,6; p). Then(v;, p;) is solution on2 N4 of:
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—Av;i+Vp;, =6, f —2V6; - Vv — AbBjv — pVO; = F;,
diVU,’ :9,~g—V9,~ -v=0Gj,

whereF; belongs taL2(2 NU;), G; belongs toH1($2 NU4;) and these functions satisfy,

1Fill L2c2nisy < CllLfllL2i2y@ndllGill gy < Clglnie)-

Fori = 0, we can consider that the domain is regular. Thus, we have classical estimates
(we refer to [7]):

luoll gr2ges) + I poll sy < C(1fll22) + gl mice))-

According to Definition 4, for each there exists av25-diffeomorphismy; associated to
U; andV;. We define orV;*:

zi=vio¥ and g;=p;oW.

From now, we omit the index (z, ¢) € H3 (V) x L2(V*) satisfies the following problem:

a(z, w) +b(w,Jackq) = [,,; Jac¥ (F o W)w, Yw e HF(V), (3.6)
bz, w) =~ [+ GoWp, Ve L2(V1), '
where
ov dw 3 ow;
a(v,w) = Z fJaOPa,] — and b(w,u)=-— Z /m,-,ju L.
— dyi dyj = dy;j
J= v+ L,j=1y1
Foreach i, j <3,m; ;j anda; ; are defined by:
qw 1L 3
m; j = 8;1,' o¥ and ajj = I{X:]:.mk’imk’j. (37)

Coefficientsy; ;, m; ; and Ja@ belong tow6().

Now, we consider a sequen¢#”) in W2 which converges ta” and we denote
(z", q™) the solution of the problem (3.6) associated#tb. The sequencé”, ¢g™) con-
verges taz, ¢) in H3(V+) x L2(V*+) and, according to [3], we know thét", ¢") belongs
to H2(V1) x HY(V*1). Following the same lines as in [3, Section 3], we will show addi-
tional estimates in order to be able to pass to the limit.iln [3], estimates are obtained
thanks to the translation method. We introduce the following difference quotients; for each
vector of the canonical baség, we define:

v(x + hep) —v(x)
h b

Sli‘v(x) = Vx € VT, Vh > 0 such that + hey € V.
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Thanks to a change of variables, we can prove@f;n", 8,? (Jacl"q")) satisfies:

a(8iz", w) +b(w, § Jaclq™)) = (T", w), Yw e HIV),

3.8
b(&pz", 1) = (X", 1), Ve L2 (V). 58

We do not write explicitlyT™ and x” but a straightforward calculation shows that
” " ||H*1(V+) < CO(”Zn ” wis+ T ” Foy” ||L2(v+) + ”qn ||L3(V+))’
||Xn ||L2(V+) < Cl(”G oW" ” HivH T “Zn “ W1v3(V+))'
Here, and in what follows, it is important to notice that the constéhtenly depend on

the norm of Ja@", a ; andm , in W6, Thus, by interpolation betweel? andL®, we
can assert that there exists<® < 1 such that

17" 100y < 22" yasqey HI F 0 ¥ | oony + " [ o)
0
”Xn ||L2(V+) < C3(||G oy" || HivH T HZn ” w1=6(v+))-

Moreover, as(8;z",s/'(Jacw"g")) is the unique solution of the problem (3.8) in
Hi(Vh) x L2(V*) /R which satisfies:

5¢="] Hih T |5 (Jace"q") ||L2(v+) <c(|r ||H—1(V+) +x" ”LZ(V*'))’ (3.9)
we obtain, fork =1, 2,
[8£2 ] aey + 18080874 | 2y < CallF o 0" |2y + 16 09" [ i)
+Cs( 2" yasas, + 198087 4" | 1 e.)-

Since(z", ¢") belongs toH2(Vt) x HL(VT), we conclude by passing to the limit in
that

Now, we notice that

by
dyk

07"

Yk

Jd(Jacy"g"
+H ( q")
dyk

H(VT) L2(V+)

Jd(Jacy g"
< C}HQ
dyk

Jacy" no )
L2(VH) L2(VH) + Cadack”| WLV |4 ”LB(V*)
Thus, we have: fok =1, 2,

azi‘l

Yk

ag"
dyk

iy

< Co([¥" lwasey) (1 £ 222y + gl 1))

H(VT) L2(V+)
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For the estimate 0{% %) in H1(Vv1) x L2(V1), we can exactly follow the proof of
[3]. Thus, asCy only depends on the norm @f” in W28(Vt), we are able to pass to the

limit in » and to obtain the following estimate @g, ¢):

Izl g2y + gl g1+ < C(||f||L2(_rz) + ||g||1-1*1(_rz))~

Next, by a change of variables, we come back to the funciiong) on the whole domain
£2 and we obtain:

10l 22y + 12112y < C(1f 22y + 181l m-1(02))-

Thus, we obtain the desired result foe= 2. For 1< r < 6, we can adapt the end of the
proof to this context without any changes

4. Aregularized problem

To prove our existence result, we follow the method of the paper [13]: we first consider
a problem with regularizing terms in the fluid equations and we prove that this problem
admits a weak solution. We regularize the initial problem in two steps. Firstly, we add an
artificial viscosity term in the continuity equation satisfied by the fluid density. The global
density is defined by:

os N Qg(1),
= . 4.1
{ oF InQ2Fr(1). (4.1)
And we definep ¢ as the solution of:
dor +div(oru) =eAor in2p(1),
Vor-n=0 ona2p (1), 4.2)
0r(0,.) =0} in 27 (0),
wheree > 0 is small. On the structure domain, we keep the initial equation:
d:0s +div(iosu) =0 onf2s(t),
0 4.3)
0s(0,.) =05 on 25(0).

We require some regularity on the initial conditions in order to obtain regularity results on
the problem (4.2): we consider initial dagd € H?(52r(0)) and o € H?(£25(0)) such
that

0<o0<0’x) <o, Vxef. (4.4)

With this viscosity term, we do not keep an energy estimate. Therefore, in order to obtain
an energy estimate, we consider the following system for modelling the fluid motion:
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or(orur) + diV(QFuF Qup)+eVupVor+Vp—divT =0 inQ2p(). (4.5)

We also strengthen the constitutive law:

p=aok + 507, (4.6)

wheres§ > 0 is small ands > 4 is sufficiently large. We will first prove the existence of

a weak solution to the variational formulation associated to the regularized problem (1.3),
(1.4), (4.2), (4.3) and (4.5) completed by the relations (1.7) and (1.8). In Sections 5 and 6,
we will come back to the initial problem by passing to the limit firstiand then ins.

As itis often the case in fluid-structure interaction problems, we are not able to solve the
regularized problem directly: we use a linearization procedure. We first solve a linearized
finite dimensional problem and then, thanks to a fixed point argument, we will obtain an
approximate solution in finite dimensicmeSV, o™, u™) which satisfies an energy inequal-
ity. At last, to obtain a solution of the continuous regularized problem, we pass to the limit
inN.

4.1. The linearized finite-dimensional problem

In this subsection, we will prove existence of a solution for a linearized problem in
finite dimension for the velocity. In order to keep an energy estimate, we always consider
the continuous equations for the flow and the density.

Let (¢i)ien be an orthogonal basis éf3(£2)3 N H}(£2)® and an orthonormal basis of
Hi(£2)% endowed with the scalar product:

(U V) a2 = / Vu:Vudy, Vu,veHHR)S.
2
Let N be a positive fixed integer. We define:
N
i, x) = @i (x),
i=1
where(@;)1<i<n belong toL2(0, T). We suppose that

T

T
//|VﬁN(t,x)‘2dxdt=/
-

0% !

N
@ (1) [P de < M, 4.7)
=1

whereM is a strictly positive real number. A8 is regular, we can solve, for eaghe 2

the differential equation:

{ XN, 0,y) =i, XN(,0,v)),
XY (0,0,y) =y.
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According to the regularity of the solution of a differential equation with respect to the
initial conditions, we can assert th&t¥ belongs toH (0, T; C1(£2)). Moreover,: being
fixed in [0, T, XV (¢, 0, .) is invertible from$2 on £2. Thanks to this flow, we can define
2Y @) = XN(1,0,250) and 2 (1) = XV (1,0, 2r(0)) = 2\ 2 (1). As the flow is
regular and invertible o2,

vt e[0,T], d(22)(1),382)>0.

Thus the open se® ¥ (r) has the same regularity thagy (1), 2% () has ac* boundary.
Then, we defing} andg} by:

30N +diveNaV) =eApY in 2N (),

Vol -n=0 ona2y (1), (4.8)
oY ©0,)=0% in 27(0),
and
30y +diveYa)=0 in 2@, 4.9)
0s(0,.) =0} in 25(0). '
This allows to define also a global densit) :
~N i~ ON
. 05 N 25 (1),
oV =125 L (4.10)
ol in2N@).

The densitie@g andégV are well defined thanks to the following lemma:
Lemma 2. With the previous notations and hypothesis, the problem defin@t&)y-(4.10)

has a unique solutiog? in L>((0, T) x £2) satisfying the energy inequality

dr
2 2y w

E/QN(t,x)zdx—i—Za / Vo (1, x)|Pdx < C,

whereC is a constant depending didiv i Il L10,7: 2o (2))- FUrthermore, the solutiog}
of (4.9)is given explicitly by the following formula

t
égv(t, x) = QO()?N(O, t, x)) exp(— / diVIZN(s, yN(s, t, x)) ds). (4.11)
0

At last,o™ satisfies the inequality'z € [0, T, Vx € £2,
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t

t
gexp(—/Hdivﬁ’v(s)||Loo(9)ds> <o, x) <§exp</||divﬁ”(s)||w(m ds),
0 0 (4.12)

whereg etg are defined by inequalitf4.4).

Proof. As XV is a function of H1(0, T; H3(£2)) invertible for any fixedr € [0, T'], we
can bring back equations (4.8) and (4.9) to reference configura@?eni6) and$2s(0). Let
us define first:

or(t,y)=0N (1, XN (1,0,y)) foreach(r,y) € [0, T] x 2 (0).
Then, after a calculation, we obtain tiggt is solution of:

{ dor —ediv(BVarp) +diva¥ (t, XN (1,0, )0r +c-Vor =0 inRr(0),
(BVor).Ny=0 0ndf2r(0),

with
B(t,y)=VXN (1,0, VXV ,0, 57"

and

&

ct,y)=

Now, we easily check that we can apply the first part of Proposition 1: we conclude that the
functiong r belongs toL2(0, T; H2(22r(0))) N HX(0, T; L?(2r(0))). Thusg¥ belongs
to L2(0, T; H2(2¥ (1)) N HX(0, T; L3(2Y (1)) and Eq. (4.8) is satisfied almost every-
where. By a change of variables, we prove titsatisfies the formula (4.11). From this,
we deduce thady belongs also td.?(0, T'; H2(2} (1)) N H(0, T; L2(2Y (1))).

At last, we want to show inequality (4.12): on the solid part, it comes directly from
(4.11). On the fluid part, we use classical methods involved to show maximum principles.
We define:

t
N, x) =8Nt x) exp(— f |diva® s, .)||Lw(9) ds).
0

Then £V satisfies almost everywhere the equation:
o fN +aN VN (divat — [divi® s, )| o) SN =eAfY in 2R @)
Multiplying successively this equation iy — g)* and by(fV — o)~ with

uT =max0, u), u~ =min(0, u),
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we obtain then inequality (4.12).0

We are now able to linearize the global variational formulation derived from the mo-
mentum equation. We look faX ", oV, u™) solution of the following problem:

(i) Foreachy € 2, XV (z,0, y) is solution of:

N _ N N
X"(0,0,y)=y
(i) The density is defined by:
N in ON
og IN2g (1),
V=15 S (4.14)

with 28 (1) = XV (1,0, 25(0)) and 2 (1) = XV (1,0, 27 (0)) = 22\ 2§ (¢). Densi-
tieso ando} satisfy:

dqof +divieNul)y=eAol in2N@),
VoN -n=0 onay (1), (4.15)
oN(0,)=0% in £27(0),

and

dof +divieyu)y=0 in2y @),

4.16
oY (,.) =02 in 25(0). (4.16)

(iii) Atlast, u" is given by:

u(t,x) =) ()i (x)., Vxe, Viel0,T],
i=1

wherew;, 1 <i < N, belongs toH1(0, T) andu” satisfies the following problem:
N

for eachv? (¢, x) = Z vi (@i (x) wherey;, 1<i < N, belongs taL.2(0, T),
i=1

T T
//éNatuNodexdt—i—//éN((ﬁN~V)uN)~UNdxdt
02

T
—8/ VQ Ndxdt+// US : Vo dx dr
02N 02¥ )
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T T
+9f((uN(z,.),vN(r,.)))Hs(ﬁg(,))dwru ff Vu® : Vol drd
0

03N (1)
+(AF+MF)/ f dIVuNdIVdexdt—a/ / )? divo™ dx dr
02N () 02N 1
T
—5/ dIVUN drdr = (4.17)
052’(0

HereG Y is defined by: for each € 2% (1),
5V (1, x) = detvX N (0,1, x) VXN (0, 1,x) 6 s[XV](r, XV (0,1, 1)) VXN (0,1, )",

whereg s[XV] is given by (1.5).
Moreover, at initial timey? is a function ofH}(52) and has the following writing:

oo oo
0 ; 0,2
= E o ;i with E o |© < o0.
i=1 i=1

Therefore, we prescribe the initial condition:

N
uM(t=0)=uf =) oy orequivalently: o;(0)=ap, VI<i<N.

i=1 (4.18)

Let us prove that this problem has a unique solutig® , ", x"). From the variational

formulation (4.17), we derive a linear ordinary differential system with the unknewns

1< i < N of the form:

NdYY _ 2 NyN N

ANE— = yNYN 4 FN, (4.19)
YN0 =v°

whereY" ='(a1, ..., ay) is a N-dimensional vector an#® = ’(al,...,a?\,). Express-
ing AN, MY and FN with respect ta XV, 5V, i) and the elements of basis, for each
1<i < N, we seethat™ (¢), for any fixedr € [0, T, is a symmetric definite positive ma-
trix. Furthermore, the matri4”v and the vectoFV are continuous of0, 7] and the matrix
MY belongs taL.?(0, T). So this system has a unique solutief)1<; <y in H(0, T).
Furthermore, sinca” belongs toH(0, T; H3(2)), the differential equation (4.13)
has a unique solution for each fixed (0, 7) and XV belongs toH(0, T; H3(£2)). At
last, by virtue of Lemma 2oV is uniquely defined inL°°((0, T) x £2). This provides
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the existence ofX", o, u") solution of the approximated linearized problem defined by
Egs. (4.13) to (4.17).

4.2. The nonlinear finite-dimensional problem

Thanks to the previous step, we will prove the existence of a solution of the approxi-
mated nonlinear problem. First of all, takin = «" in the variational formulation (4.17),
we obtain the following energy estimate for the solutiagi, oV, u'V):

1d

5dt/@N|MN|2+(AFJFW) f |divul¥|?

2 2y @
N |2 N |2
+ur [ Vuge|” 4 6]|ug ”HS(ﬁgv(r)) <,
2y o

whereC1 depends o/ and onN. This estimate is obtained using inequality (4.7), esti-
mate on the density" (4.12) and the boundednessX¥ in L>(0, T; C1(£2)). From this
inequality, we deduce that

/|VMN(t,x)|2dx < Cy,

2

whereC, depends oM/, N and the data. Therefore, this provides the existence of a time
TV depending onV such that

™ o
/Z|a,~(l)|2<M. (4.20)
5 i=1

We define the space:

™ y
/Z|ai<r)|2<M}
0 i=1

C= {(ai)]_gig]v € LZ(O, TN)N

and the map
K:Cr 12(0,TV)",
YV =@ ....an) > YN =(a1,....an).

The setC is convex and closed in?(0, 7V)N and the mapK is continuous. Moreover,
according to (4.20)K(C) c C. To show the existence of a fixed point &f, we have
to prove thatk (C) is a relatively compact set ih2(0, 7V)V. As (A¥)~1 is bounded in
L>0,TV), FN is bounded inL>(0, T") and M" is bounded inL2(0, V) uniformly
in YV in C, we deduce from (4.19) tha (C) is a bounded subset 6#21(0, 7V)¥ and
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thus is relatively compact in2(0, 7V)N . Therefore, we can apply the Schauder’s theorem
which gives the existence of a fixed poinl .

At this step, we only have the existence of a solution of the approximated nonlinear
problem on the intervdD, 7V with TV depending oV . This solution satisfies the energy
estimate:

t
1 2 a 1) B 2
o [ Pace o [ @y ety [ @ e [ vl
2 28 2N 02N @s)

t

1
et [ [ lavilPeo [ ©al 6y, +us [ 1EE
02 0 25(0)

t

A _ _
w2 [ e e [ [ @) P o)) ) ve P = £y @
25(0) 02N

whereEé" tends toEg whenN goes to infinity.

We have to prove that we can extend this solution until an arbitrary TimEo do this,
we iterate the process of linearization from new reference configura.(RéYw(STN) and
2N (1) and from new initial conditions™ (7") and oV (T"). Thanks to (4.21) and
estimate (4.12) satisfied ky", we show that the solution is defined on a time interval
of fixed length independent Gf”. This allows to extend our solution until the arbitrary
timeT.

4.3. The continuous problem
Let us pass to the limit itV to obtain a solution of the continuous regularized problem.

4.3.1. Strong convergence Ot ") yen

First, thanks to the regularizing term énin the structure equation, we easily obtain a
strong convergence result for the flow ™) y .

For N sufficiently large, we hav&)) < 2Eq. So, we deduce from estimate (4.21) that

T

0 f Juf &, ')”iﬂm?o» dr < CEo. (4.22)
0

Thus, the sequend& ™) yen is bounded inH1(0, T; H3(25(0))) by a constant depend-
ing only on Eg and#. We denoteX the limit of (X")yen in HY(0, T; H3(£25(0))) and
we define, for each 25(r) = X (¢, 0, 25(0)) and2¢ (r) = 2\ 25 (¢). The flowX satisfies
equation (1.3) where is the weak limit inL?(0, T; H}(£2))3 of (u) yen. As the embed-
ding of H1(0, T; H3(£25(0))) in C(0, T; C1(£25(0))) is compact,
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XV - Xx inc(o,T:CY(825(0)). (4.23)
This allows to assert that

XaN@ = X2s0) and XN = X2r () in C(O, T; L”(.Q)), Vi< p<oo,
s 4 (4.24)

where x4 denotes the characteristic function associated to thd sipw, the limit X is
only defined onf25(0). In all what follows, we want to avoid collisions betwe&ry (1)
and the boundary a2 and we wanfX to be invertible from25(0) onto £25(¢). According
to the estimates otX ") yen, these two conditions are valid at least up to a tifite> 0
depending only oA and initial conditions. Indeed, denotidgr) the distance betweeh2
and$2s(t), we have:

t

/ 0, X (s,0,y)ds
0

d(t) >2do— sup
yeRs(0)

Thus, thanks to (4.22), we have:
d(t) > d(0) — C1v1,

where(1 is a constant depending dfp, 6 and on the embedding constantif(£25(0))
in L®(£25(0)).

In the proof, we also want to be able to extend, 0O, .) by an invertible functiory (z, .)
in H1(0, T*; H3(£2)) such that boundary points are kept invariantbyr his will be useful
to come back to the reference configurati®p (0) for an equation defined on the moving
domain. To do this, we introduce a linear continuous operator:

P:H3(25(0)) > H3(2) N HF (2)
and then, for eache [0, T'], we define the function,
Y(t,)=1d+P(X(0,.)—1d) ing. (4.25)
If we have:
Ivya,.) - Id“Loc((o,T*)x.Q) <e,

wheree is small enough and depends only@nthenY (¢, .) is invertible froms2 onto $2,
for eachr fixed. But, we remark that

<Cp|Xx(.,0,)—

HY(t, ) — |d||L°°(O,T;H3(Q)) Id||L°°(O,T;H3(~QS(O)))

t
f 9sX (s,0,y)ds
0

< CpCoV/T,
L®(0.T:H3(25(0)))

<Cp
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where Cz depends only orEg and Cp designs the continuity constant &f. Thus, for
a < 1 fixed, this provides the existence of a timi& depending ony, d(0), ep, 6 and $2
such that

d(t) > (1 —w)d(0) foreachr €[0,T*] and ||VY(t,y)—|d“Loo((0 ryxq) < €0

In particular,Y (¢, .) is invertible from£2 on 2 and X (¢, 0, .) is invertible from£2¢(0) on
25(1), for eachr € [0, T*]. We denoteX (0, ¢, .) the inverse ofX (¢, 0, .).

From now on, we work on the intervflD, T7*]; the last section will be devoted to the
extension of the solution beyorfd.

4.3.2. Strong convergence @) yen
Lemma 3. We have the following estimates @) yen: VN € N,

T* T*
sup /|QN(t,x)}ﬂ <C, ef / voVf<c, //|QN|ﬁ+l<C. (4.26)
2 0

o<i<T™
0eN®

Proof. On the solid part, a@fs" is given by (4.11)(0")nen is bounded or.>(0, T*;
LOO(Q?’ (1))). On the fluid part, the first estimate comes directly from the energy estimate
(4.21). The second estimate is obtained by multiplying (4.1&);}5yM0reover, according

to (4.21),((o™)?/?) yen is bounded inL2(0, T*; H1(2Y (1))). As

HY(2N@1n) — L8(2¥ 1),

with an embedding constant independent dfand ¢, the sequencé(o™)?)yen is
bounded inL1(0, T7*; L3(2X (1))). Thus, by interpolation, a&o™)#)yen is bounded in
L0, T*; LY(2¥ (1)), ((@V)P)nen is bounded inL#3(0, T*; L?(2¥ (1))). From this
and the fact thag is taken greater than 4, we deduce the last estimate.

We denote by the weak limit of(o™) yen in L®(0, T*; LA (£2)). On the solid part, as
the velocity is regular, we keep an explicit formula@n

t

o(t,x) = QO(X(O, t, x)) exp(— / diVu(s, X(s,t, x)) ds)), Vx € 25(t), (4.27)
0

and ¢ satisfies onf25(¢) the continuity equation (4.3). To pass to the limit in the fluid
part, we need a result of strong convergence on the density. This is given by the following
proposition:

Proposition 3. The sequencé”) strongly converges to in L#((0, T*) x £2).
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Proof. As (u™)yen is bounded inL2(0, T*; L8(£2)) and (o")yen is bounded in
L®(0, T*; LP(2)), the sequencéo™ u)yen is bounded inL2((0, T*) x £2). Thus,
according to estimate (4.26), Egs. (4.15) and (4.1&@Y)ven is bounded in
H(0, T*; H~1(£2)). Moreover, thanks to (4.11) and (4.2&N¥o")yen is bounded in
L?(0, T*; L?(22N (1)) and inL?(0, T*; L?(2Y (1))). Thus, by virtue of Lemma 4 which
follows, we obtain the strong convergence @ )yey in L2((0, T*) x £2). At last,
as (o) nen is bounded inLA+1((0, T*) x £2) according to (4.26), we can assert that
(o) nen strongly converges to in LA ((0, T*) x £2). O

We give now an adaptation of Aubin’s lemma to moving domains. A proof of Aubin’s
lemma is given in [18, Chapter 1, Theorem 5.1]. We can adapt this proof to our context
without main difficulties (for a detailed proof, we refer to [6]).

Lemma 4.Let (0")nen be a bounded sequencelid((0, T*) x §2) such that
o™ —d0 InL30, 7% H(2))w,
and (Vo) yen is bounded inL2(0, T*; L2(22X (1)) and inL2(0, T*; L3(2} (1))), then

oV > in Lz((O, T%) x £2).

Proposition 3 allows us to identify the weak limit @d™u™)yen in L0, T*;
L%/r+D(2))3 aspu. The weak formulation associated to Eqgs. (4.14) to (4.16) is:

T* T*
—f/QN(a,1p+uN.w)+e/ / Vo'Vy =0, Vy eD((0,T*) x 2). (4.28)
0

0N ®

Therefore, we can now pass to the limit in this formulatipns solution of:

T* T*
—//Q(B,W+M.V1ﬂ)+8// VoVy =0, V¢ eD((0,T*) x £2). (4.29)
0

02r(t)

This is equivalent to the system of Eqgs. (4.1)—(4.3) expressed in the sense of distributions.
To complete this subsection, we set a regularity result on the density:

Lemma 5. The sequencé™)yen is bounded inw14(0, T*; L4(£2)) and in L7(0, T*;
W24 () NL1O, T*; W24(22¥ (1)) with g = 4/3. Moreover, the functiop belongs
to Wh4(0, T*; L4(£2)) and toL4(0, T*; W24 (2 (1)))NL1(0, T*; W24 (2s(t))) and the
systen(4.1)—(4.3)is satisfied almost everywhere.
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Proof. On the solid part, estimates on the density come directly from (4.11). On the fluid
part, as explained in the previous paragraph, we can extéhan 2 by an invertible
function Y™ which belongs ta#1(0, T; H3(£2)). We define:

ort, ) =0oN(t.YN(t,y)), Vie(©,T%), ¥y e 2r(0).
Theng? satisfies on(0, T) x £2r(0)
oy +c - Vop —ediv(BN VoY) = —div(epu™)(r, YN, ),
wherec” andB" are defined by:

N N 2 N N N N 1 N _
=v" — —— B V(detVY"(t,.)), B (t,y) = VY (t, vYN, _
< TV T detvyNa, ) ( (t.)), B (t.) (,y) ,y)

The sequencéB™) yen is bounded inH1(0, 7*; W16(£2)) and is uniformly coercive in
time and space. The sequened)ycy is bounded inL2(0, T*; L°°(£2)). Moreover, as
(0Nu")yen is bounded inL2(0, T*; L%/(B+0) (2)) n L>°(0, T*; L2P/F+D(22)), by in-
terpolation, we can say th&@?u")yen is bounded inL4(0, T%; L?(£2)). This allows
to apply Proposition 2: the sequen@e!) yen is bounded inL#4(0, T; H1(2)), whereT
depends only on the norm & in H1(0, 7*; W16(£2)). By writing that

div(gguN) =ul . Vol + diV(uN)Qg,

we obtain thatdiv(oX u™)) yen is bounded inL4((0, T) x £2r(0)) with ¢ = 4/3. There-
fore, according to Proposition 1o%)yen is bounded inW14(0, T; L4 (27 (0))) N
L(0, T; W24(£2r(0))). To obtain these estimates on the whole intef@all'*], we it-
erate the same proof with a change of variables in the new reference config@2ati@n.
In a finite number of steps, we reach the tiffie

At last, to get estimates on the limit we adapt the previous argument withinstead
of YN. O

4.3.3. Strong convergence @f") yen
First, we strengthen the weak convergencegdfu®™ ) yen in

L>(0, T*; L2y/(y+1>(9))3.
We show that
oNu¥ - ou in c(0, 7% Liy/(y+l)(9))3~ (4.30)
To prove this result, it is sufficient to show that, for eachN, (fQ oNuN ¢;) nen Strongly

converges irC(0, T*). Takingv = x[o.¢: in the weak formulation satisfied hy", we
obtain:
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/g”(r )u (1, )i — /auogo,(x)—//e uV @u Ve
—s/ / (Vulk . Vol)g; +f / oy :V(pi+9/((uN(s,.),go,-(.)))mmév(s))
0

02N ) 02N (s)
t t
. N 1 N .
+()LF+MF)/ / divu dIV(pi—I—,prf / Vu™ : Vg;
02N 02N ()
t t
—a// (Qg)ydivwi—B// (Qg)ﬂdngoi. (4.31)
02N 02N (s)

Let us estimate:
t
h?(r)://QNuN(X)uN :Vo;.
0

As (0N u)yey is bounded inL>® (0, 7*; L2/ +1D(£2))2 wherey > 3/2 and (u") yen
is bounded inL2(0, T*; L8(2)), (oVu" ® u™)nen is bounded inL2(0, T*; L1(£2)).
Supposing that the basis functign belongs toC1(£2), we conclude tha(hll")NeN is
bounded in#1(0, 7*) and therefore(hllv)NeN strongly converges i@ (0, T*). We define:

t
hlzv(t) = —8/ / (Vug.VQg)goidxds.

02N

To estimate this term, we notice th@tY ) yen is bounded irL¥3(0, 7%; W243(2¥ (1)) N

L*>(0, T*; L4(Q’F\’(t))), according to Lemma 5. Thus, by integrating by parts, we obtain
that (ng(t)vgg)NeN is bounded inL83(0, T*; L2(£2)). As (Vul)yen is bounded in
L2((0, T*) x £2), this is sufficient to assert thah’z\’)NeN strongly converges ifd(0, T*).
Estimates on the other terms of (4.31) are obtained with the same kind of arguments and

we obtain (4.30).
From this, we deduce the strong convergence of the sequefe€) yen:

oNu = ou in c(0, 7% H_l(.Q))s. (4.32)
4.3.4. Passage to the limit in the weak formulation
To pass to the limit in the weak formulation satisfiedu3y, we use the strong conver-
gence results given by (4.23), Proposition 3 and (4.32)@A9 ycn Weakly converges to
win L2(0, T*; H3(£2)), (4.32) implies that

oNuV @uN —~ou®u in D'((0, T) x £2).
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Therefore, the only remaining difficulty lies in the convergence of the following term:
T
—8/ / (Vul(t,x) - Vol (t,x))v(t, x) dx dt. (4.33)
0e¥wn
We need a strong convergence result on the sengg&qt)VQﬁ)NeN in L2((0, T*) x £2).
If we multiply (4.15) byo¥ and (4.2) byor and we integrate in space and in time, we
obtain:

t

2g(f/ |VQF|2dxds—// }vQﬂzdxds):/t/ divi |0 % dx ds

0827 (s) 02N (s) 02N (s
t

—// divulor 2 dr ds + / o (1, )| dx — / lor(t, x)Pdx.  (4.34)

0825 (s) 2N Q2r@)

Using Eq. (4.15), we can reinforce the convergean@f)NeN by obtaining a strong
convergence result inC(0, T*; Lf;)(s?)). Therefore, we deduce from (4.34) that
(Xgév([)vgg)NeN converges tq e, ) Vor in L2((0, T*) x £2). This result allows to pass
to the limit in the term (4.33). For each fixed> 0, we have thus obtained a solution
(Xe, 0¢, u) satisfying the following properties:

Proposition 4. For each fixede > 0, there exists a solutionX,, o., u.) of the prob-
lem(1.3), (4.1)—(4.3}hat satisfies the weak formulatidior eachv € V,

T*

T*
// Qs(t,x)ug(t,x)atv(t,x)dxdt—i—//gg(t,x)(ug®u£)(t,x):Vv(t,x)dxdt
0 R 0

T* T*

—8/ f (Vup,g(t,x).VQF,g(t,x))v(t,x)dxdt—/ f 05.¢e: Vv
02 (t) 0025, (1)
T* T*
—9/((u5(t, ), v(t, .)))Hg(gs,a(t)) dt—()»F—i-//LF)/ / divu, divv dx dr
0 027 (1)
T* T*
—/LF/ / VuE:Vvdxdt+a/ / Q};’Edindxdt
02F (1) 082F.(1)
T
+a/ / Q?Sdindxdtz—/Qouov(O, )dy. (4.35)

082F (1) 2
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At last,

<C and ¢|Vorel?ag e, C. (4.36)

[Xet,0.) 120,74 325000 L2@ps ) S

5. Passage to the limitine

This section is devoted to the passage to the limi.ifhe main difficulty lies in the
identification of the pressure. We need estimates on the fluid density “up to the boundary”.
With the same arguments as in the previous section, we can assert that the sé&ugnce
converges strongly i6(0, 7*; C1(25(0))) to X which belongs ta71(0, T*; H3(£25(0))).
FurthermoreX satisfies Eq. (1.3). We denote Iy the extension of(, to 2 defined in

Section 4.3.1.
We also keep the expression (4.27) on the solid part for the ¢inoftthe sequencéo.)
in LA((0, T*) x £2).

5.1. Estimates on the density

To pass to the limit in the variational formulation, we will need extra estimates for the
fluid density. In order to obtain this, we first give two results related to Stokes problem.
We define the linear operatoRy and P? by R!(f) =v and P/ (f) = p where(v, p)
is the unique solution of the following Stokes problem, for eaahde fixed:

—Av+Vp=f in QF @),
divv=0 in 2Fr (1),

F,a() (5'1)
v=0 oNa2r (1),

f-QF(O) poYe(t,)=0.

First, we recall a result given in [16] which gives existence of solution to the Stokes prob-
lem for a right-hand side belonging # ~1". The paper shows that this result holds for

a domain with aC* boundary or for a Lipschitz domain with a Lipschitz constant smalll
enough.

Lemma 6. P{ is a continuous operator from =17 (2F (1)) in L"(2F.(t)) for each
1 <r < oo. Moreover, the continuity aP? is uniform int and ine, i.e.,

” Pts(f)| Lr(QF,E(t)) g C”f”W*lJ(_QF,E(l))a
whereC is independent of andr.

Furthermore, according to Lemmady is also a continuous operator fratfi($2r . (¢))
in WL (2 (1)) for each 1< r < 6, and

| PE O iy < CUFILr@ec-
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We also give a differentiation result with respect to time for a Stokes problem defined
on a moving domain. This result can be proved following the method given in [4].

Lemma 7.Let f belong toCL(0, T*; L™ (22F ¢(1))). We have the following result

1
Pf(atf)=3sz(f)+m< /(VPf(f)~va)0Ya(l,-)>+P, (5.2)

2r 0

wherev, is the Eulerian velocity associated 1@ and p is the pressure solution of the
Stokes problem,

—Aw+Vp=0 in 27, @1),
divw=0 in 27 @),
w = (ue - V)R (f) oNa$2F (1),
f-QF(O) poVYe(t,.)=0.

(5.3)

We will now prove global estimates on the density “up to the boundary” of the fluid
domain thanks to a method introduced by [20]. At this step, we have to solve difficulties
due to the moving interface.

Lemma 8.

”QF,S”LV+1(0,T*;LV+1(QFY5(0)) + ”QF,S”Lﬁ‘*’l(o’T*;Lﬁ‘*’l(QF’S(t))) <C, (5.4

whereC depends only of and the data of the problem.

Proof. Formally, we define:

(MOv 170) = (Rg’ Pts)(_Aus)a (ulv Pl)
= (Rgv st)(at(QF,sus) + diV(QF,aug Qug) + EVMSVQF,S)-
We will check during the proof that these functions are well defined. Then, from the weak

formulation (4.35), we deduce the following system satisfied in a weak sense for each
ande fixed:

—A(u1+ pruo) + V(urpo+ pr+a(re)’ +8(0Fe)? — (bp +pp)divuy) =0
inQ2p (),

div(uy + prug) =0 inQp (1),
ur+ pruo=0 0NIL2F ().

According to the existence and uniqueness of the pressure up to the addition of a constant,
we have:

wEpo+ p1+aer.e)’ +80Fe)? — or +up)divue = co(r) in QF (1),



1544 M. Boulakia / J. Math. Pures Appl. 84 (2005) 1515-1554

wherec, (¢) is a constant depending only on the time and is given by,

/ (trpo+ pr+a(ors) +8(0rF.)P — (r +pp)divig) o Ye(t, y) — ce (1) dy = 0.

Thus, we have:

T*
f / a(or.)’ 1+ 5(0r.0)P
02F,:(t)
T*
= / / (OF + mp) diVie + co (1)) oF,e
082 (1)
T*
- / / (/LFPIS(_A”s) + Pte (81‘(QF,8”5))
OQF.S(Z)
+ Ptg(diV(QF,gMg ® Mg)) + Ple(evuanF,a))QF,s' (56)

Thanks to the energy estimate satisfied by the soluthn o., u.) and according to the
definition of ¢, we easily show that the first integral in the right-hand side of (5.6) is
bounded. For the second integral, we use the properti€§ given by Lemmas 1, 6 and 7.
The first term of this integral is defined by:

T*
11(€)=MF// Pf(Aue)oF.e-
OQF,E(I)

As (u,) is bounded inL2(0, T*; H(£2)), according to Lemma 6PF (Au,) is bounded in
L2(0, T*; L>(2r ¢ (1))). This allows to conclude that

\11(5)| < C” Pf(Aug) ”LZ(O,T*;LZ(.QF‘E»(I)))”QF’S”LZ(O,T*ZLZ(QF,e(l)))'
Next, according to Lemma 7, we have:

T*

I (e) :/ / st(at(QF,sua))QF,a

027,61
T*

= / / (81‘P,8(QF,£148)
0802F (1)
1

" m / (VPIS(QF’SuE) ' vs) o Yel(r, )) + pa)QF,&

2r(0)
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where p. is defined by the Stokes problem (5.3) where we replat®y or .u.. First, as
oF.c satisfies (4.2), we notice that

T*
12,1(8) :/ f 8ZP[€(QF,SM8)QF,8

0QF (1)
= f P]E"* (QF,S(T*)MS(T*))QF,S(T*)
2 (T*)
T*
g0 0y,.0 &
- f PO(Q u )QF+8/ / VPt (QF,S”E)'VQF,S
2r(0) 082p.()
T*
_/ / QF,SVPtE(QF,aua)‘us-
OQF.E(Z)

Thus, thanks to Lemma 1, &8/ (o .u.)) is bounded irC(0, T*; WL1¢/°(2r . (1))) and
in L2(0, T*; HY(2F.¢ (1)), (I2.1(¢)) is uniformly bounded irz. To estimate,

T*
1 &
IM(S)ZW/( / (VP (oF,sue) - ve) o Yelt, -)) / OF e
0

2r 0 2F,6(1)

we use the boundedness(@’ (orcu.)) in L2(0, T*; Hl(.QF’s(Z))) and the boundedness
of (ve) in L?(0, T*; L?(2F.+(1))). At last, (p,) is bounded inL1(0, T*; L?(2F +(1))), as
((ue - V)R (0F.cu)) is bounded inL (0, T*; HY2(32F +(t))). From all these results, we
deduce thatl2(¢)) is uniformly bounded irz. It remains to study:

T*

13(8)2/ / Ptg(div(gp,gue,;@ue))gp,g and
0QF.()
T*

14(8)2/ / Pte(gvustF,s)QF,&
OQF.S(I)

As (oF.cue) is bounded inL?(0, T*; L?(2r.¢(1))) and (u) is bounded inL?(0, T*;
L8(2F. (1)), (0F.cus ® ue) is bounded inL(0, T*; L¥?(2F +(t))). Thus, thanks to
Lemma 1,(P? (div(or cu: ® u;))) is bounded inL2(0, T*; L3?(2F (1)) and (I3(e)) is
bounded.

Moreover, as(eVu,Vor.,) is bounded inL(0, T*; LY(2F (1)), this sequence is
bounded inLY(0, T*; W=143(2r . (r))). Thus, (I4(¢)) is also bounded. This allows to
conclude and to obtain inequality (5.4)0
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5.2. Passage to the limit

To pass to the limit in (4.2) whengoes to 0, we need to identify the limit &, u.) in
L2, T*; LZ/(r+1D(02)). First, asp, satisfies (4.2), we can strengthen the time conver-
gence and prove that

e — 0 In C(O, T"; L&(.Q))
This implies the following strong convergence result:
0 — o0 inC(0,T* H™X(£2)).

Therefore, asu,) is bounded in.2(0, T*; H&(Q)), we can assert thap.u.) weakly con-
verges topu in L°(0, T*; L%/+D(2)). We are then able to pass to the limit in (4.2):
the limit o is solution of (1.9). Moreover, following exactly the arguments in [13], we show
that this equation is satisfied almost everywhere and we can use the regularization proce-
dure introduced in [11] to show thatsatisfies this equation in the sense of renormalized
solutions.

As in the Section 4.3.3, we can strengthen the convergence of the sequenge
and prove thato,u,) converges tau in C(0, T*; L2/ (2)). Now, using compact-
ness of the embedding®/¥+Y(2) c H~1(£2), we obtain that(o.u,) strongly con-
verges toou in C(0, T*; H=1(£2)). This allows to identify the limit of(osus ® u;) in
D'((0, T*) x £2).

To be able to pass to the limit in the weak formulation, it remains to identify the limit
of the pressuréao}. , + 8@?8). Here, although the fluid domain moves, as it is sufficient
to obtain local estimates to identify the pressure, we can follow the method introduced
by [13] for a compressible fluid with no moving structures inside. Thanks to Lemma 8,
we know that this sequence weakly converges ifitD/2((0, T*) x £2) to p. We define
R(z) = az¥ + 8zP. Thus, we want to prove that

Ror.e) = Rier) in LEHVE(0,7%) x @2). (5.7)
The first step consists in proving that

Lemma 9. For eachg € D(0, T*; D(2F(1))),

li
e—0

T* T*
m // 9 (R(0F.s) — (hp +21p) diVug)oF, e = // ¢*(p — (r +2up)divu)or.
02 02

Proof. To prove this lemma, we follow the proof of Lemma 3.2 in [13] by considering the
following test functions in (4.35):

v=0A;[por.].

The definition and properties of operatdrare given in [13]. O
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Let us consider a nondecreasing sequeige of nonnegative functions belonging to
D(0, T*; D(£2F(t))) which converges tq e, in LP((0, T*) x £2) for each 1< p < oo.
We have, according to Lemma 9, far< n,

T T*
”mSUp//%Z,,R(QF,e)QF,e <//§03(P—(?»F+2MF)diVM)QF
02 0%

e—0

e—0

T*
+ G+ 2 imsup [ [ g2or, dive,
0P

T* T* T*
<f/ pQF+()\F+2uF)<IimSUIO// QF,sdiVMs_// QFdiVu)Jrn(n),
0
02r() Y 0ol 02r()

with lim,_. - n(n) = 0. According to Remark 2, ag satisfies Eq. (1.9) in the sense of
renormalized solutions, we can také) = zlog(z) in (1.13) and we obtain:

T*
/ / or divu = / 0% 10g(o%) — / or (T log(or (1), (5.8)

082r (1) 2r(0) 2p(T*)

Moreover, according to Lemma by . satisfies (4.2) almost everywhere. By multiplying
(4.2) byb'(oF..) whereb is convex and of clasg?, we have:

0b(0F.e) + div(b(QF,s)Ma) + (b/(QF,a)QF,s - b(QF,s)) divu, —eAb(or,) <0
in 27, (@1).

Takingb(z) = zlog(z), we obtain:

T*
/ / or.c v, < / ¢®log(e® - / 0re(T")l0g(0r(T%).  (5.9)

082F (1) 2r(0) 2F.(T*)

As b is convex, this allows to assert that

T* T*
imsup [ [ 2Rer.ar. < [ [ per: (5.10)
=0 0 0R2r @)

At last, in order to conclude that (5.7) is satisfied, we use a monotony argument. The
applicationR is monotone and thus, for each functiomegular enough, we have:
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T*
/ / ‘pi(R(QF,s) — R(v))(QF,s —v)>0.

002 ()

By passing to the limit ire, we deduce thanks to (5.10):

T* T* T*
// pgp+// w,%,R(v)v—// 92 (pv+R(v)or) =0,

0Q2F() 0Q2Fr() 0Q2Fr (1)

and then, by passing to the limitin, we get,

T*
f / (p—R@)(er —v) =0.

0020

As this inequality is satisfied for each smooth functignve have proved (5.7). In order to
conclude this section, we resume the properties of our solution:

Proposition 5. For each fixeds > 0, for each initial datagg)(s in H2(£25(0)), Q%S in

H?(2r(0)) satisfying(4.4)andu® in H}(£2)3, there exists a solutio(Xs, o5, us) of (1.3),
(1.9)which satisfies the weak formulatidior eachv € V,

T* T*

// os(t, x)us(t, x)d;v(z, x) dx dr +ff 0s(t, x)(us @ us)(t,x) : Vu(t, x)dx dr
0 0R

T* T*
a / / o881V =0 /«”5(% D0 )) g3y O
002s,5(t) 0

T* T*
—(kp+up)// diVu(gdindxdt—,uF// Vugs : Vudx dt

0Q2F5(t) 0QF5(t)
-
+[ / (a0} +5Q§)diwdxdt=—fg°u°v(o, )dy, (5.11)
082F.5(1) 2

with,
os.5(t,x) =detVXs(0,1,x)VX;(0, ¢, x)_léS[Xg](t, Xs(0, ¢, x))VXg(O, t,x)"".

At last, (X5, 0s, us) satisfies the following energy estimate
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3 [eolsolas o [ onswr+ 525 [ erser
Q 2rs) 2F (1)
t t
+w[/ |WF,3|2+<AF+MF)ff [divurs|?
092F5(s) 082F,5(s)

t

+96 f (45.5(5), 15.6())) ragag 59 T M / |E(Xs(,0, )| dy
0 25(0)

2
25(0)

A
+= / Itr E(X5(2,0, ))[*dy < Eqj. (5.12)

6. Passage to the limit ing

It remains to pass to the limit in the regularizing paramété&irst, we weaken the initial
conditions on the density. We consider an initial d@@ain LY (£2r(0)) and a sequence
(09 ) of functions belonging td72(s2(0)) such that

0<8<0)s<8 Y and o} — 0% inL”(2r(0)ass— 0.

For the structure, we also consider an initial d@gan L>*(£25(0)) and a sequeno(@gﬁg)
in H2(£25(0)) which converges to$ in L>(£25(0)).

Let us notice that, with this choice of sequem@%’a), the initial energy estimat€g s
stays bounded astends to 0.

As in the previous section, we show complementary estimates on the segagnce

Lemma 10.
loF.sll Ly+e@1+Lr+a(2p sy + ONOF sl Lo+a (0.7 Lo+ (2 517 < C (6.1)
whereq is a strictly positive real number and depends only on the initial data.

Proof. We use the same technique as in Lemma 8. At this step, we use the fact that
y > 3/2. We have the identity:

wrpo+ p1+aers) +8Fs)? — O +urp)divus =cs(t) in 2r5(t),

wherecs is given by Eq. (5.5) where we replacedoy §. Now, the trace of the fluid
density is no more defined on the boundary of the fluid domain. Therefore, in or-
der to justify the calculations, we consider a seque@tg in D([0, T*] x 2F 5(1))
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which converges t@‘;’s, wherea > 0 has to be fixed, ir.°°(0, T*; LV/“(QF,S(t))) N
L0, T*; LP/*(2r 5(1))). We have then:

T* T*
f f (a(0rs) +8(0rs)")dn = / / (O + p) divis + c5(6))
082F5(1) 082F 5(1)
T*
—f/ (PP (—Aus) + P2 (3:(oF sus)) + P (div(orsus ® us)))dn.  (6.2)
0802F 5(t)

According to the energy estimate (5.12), the sequeges) is only bounded in
L0, T*; LY (£2)) with y > 3/2. Let us define:

T*
1) = (o + 1) / / divies by,
082Fs(1)
Then,

[ 110 < Clidull 20,7, 12625 s oo | AV Us | 20 7, L2225 5 1)

<
S Clonli 20,7+ L2(25 517

Next, as(cs) is bounded in.*° (0, T*), we have:

T*
‘J2(5)|= /Cs(t) / Pn <C||¢n”LOO(O,T*;Ll(.QFJ;(t)))'
0 QFs5()

For the other terms, we apply the propertiesPdfderived from Lemmas 1, 6 and 7. Thus,
as(us) is bounded inL2(0, T*; H}(£2)),

T*

/ / P} (Aus)gn

082F,s5(t)

|J3(5)| =M < Cllgn ||L2(0,T*;L2(9F,a(t)))'

For the term:

T*
14(5)=—// P (0 (or.5u5))$n,

0RF5(t)
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we follow the technique of the proof of Lemma 8. We obtain that:

T*
f / PP (or.sus)(dpn + div(gnus))|,

0Qps@)

[J4(8)] < C||¢n||Loo(o)T*;Lp’(_QF15(;))) +

where 1< p’ < oo is defined by: Ip’ =2/3— 1/y. At last, we show that

T*

|J5(8)| = ‘—/ / PP (div(or,sus ® us))én

0Q2Fs(t)

S Clloll Lo 0.1+ L7 2r. 0

Assembling all these estimates and taking 2y /3 — 1, we obtain, by passing to the limit
in n, that

T*
/ [ a(QF,B)y_H)[ + S(QF,S)'S_HX < C”QF*S||(Z,2"(O,T*;L2"‘(Qp5(l‘))) +C.
082p,5(1)

If we suppose that < y, we deduce from this inequality the desired estimate.

To pass to the limit ins in the weak formulation (5.11), we follow exactly the ar-
guments developed in Section 5.2. We obtain tfzgits) strongly converges teu in
C(0, T*; H~1(£2)) and that(osus @ us) strongly converges tou ® u in D’ ((0, T*) x £2).
This allows to pass in the limit in the continuity equation satisfiedopyTherefore, to
conclude the passage to the limit, it is sufficient to prove that

ok =ok.

Whereg_ié is the weak limit of the sequencﬁ@;’s) in L0t/ (0, T*) x £2).

The end of the proof is now very similar to [13]. We give only the main steps of the
proof without detailing. For complementary explanations, we refer to [6]. First, we define

a family of cut-off functions:
Ti(2) = kT(%),

whereT € C*(R) is a concave function such that
T(z)=z, Vz<1l and T(zx) =2 Vz>3.

Then, exactly as in [13], we show the following convergence result;
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Lemma 11.For eachk € N, for eachg € D(0, T*; D(2r(1))),

T*
giino// 0?(aok s — (L + 2up) divus) Te(oF.s)
002
T*
= // ﬁﬁz(aQ; — (hr +2up)divu) T (oF).
002

From this result, we deduce that

“T Séjp” Ty (93) —Tx (Q) ||LV+1((O,T*)><.Q) <c, (63)
N

wherec does not depend df. This estimate on the solid part is obtained thanks to the
strong convergence @bs s) to os in LY ((0, T*) x £2). This inequality allows to prove
that satisfies the continuity equation in the sense of renormalized solutions and this fact,
thanks to a regularization procedure, allows to identify the lghitg o of (o5 l0ges):

ologo(t) = (eloge)(t), Vx e Rp(t), Vt [0, T7].

This result implies thates) strongly converges to in L1((0, T*) x £2) and allows to
identify the pressure.

7. Conclusion
To conclude, we will prove that we can extend our solution until the time:
Ty =supfr >0 d(t) > a1, g(1) > a2, X5(t, 0, .) one-to-ong,

with o = (a1, a2) wherea; anday are two arbitrary small enough positive real numbers.
Thanks to the regularity of our solution, this will give the existence of a solution defined on
the interval[O, T] whereT is defined by (2.4). IT* < T, we have to extend our solution
beyondT* on a time interval whose length is independent'éf To do this, we iterate the
process with the new reference configuratiohg 7*) for the solid domain and2z(T*)

for the fluid domain. Initial data are nowy (7*) in LY (2 (T*)), 0s(T*) in L*(25(T*))
andu(T*) in H3}(£22)3. As what has been done on the interf@I7*], we regularize the
datapr (T*) andos(T*) to solve the problem with > 0. Conditions on the time existence

T* are discussed in Section 4.3.1. We resume the arguments to obtain new conditions on
the new time existencg;; the solution of the finite dimensional problem satisfies:

T
9/||ugv(z, ')”23(9?0» dr < 2E(T*) < 2Eo.
T*
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This estimate implies thatx (z, T*,.))yen is bounded inH3(25(T*)) by a constant
only depending o and Eg. Therefore, we have the following estimate on the distance
d(t) between the structure and the boundary2oét timer:

t

/BSXév(s, T, y)ds
T*

d(t) > d(T*) — sup
veRs(0)

>ay — C1v/t,

where C1 depends only onEg, 6 and the embedding constant @f2(25(T*)) C
L*>®°(25(T*)). We can easily prove that this embedding constant only dependson
6 anday. Thus, on an interval of strictly positive length only dependingHné ande,
we haved(t) > «/2. We also want to extens (r, 7*, .) by an invertible functiory’. We
introduce the operator,

P H3(2s(T*) = H3(2) N HY($2),
f>P(foXs(T*0,)),
and we define:
YN, )=1d+P(X§ @, T* ) —1d) ong.
Then, we can prove that

WhereC73 only depends o, 6 and Eg. Therefore, we can reiterate the same work from
T* on an interval of strictly positive length only dependingearEg, 6. We just have to take

care that our reference configurations only havé3boundary. We need to weaken the
hypothesis of regularity in Proposition 1. This proposition must now be valid in the domain
Qp(T*) = Y(T*, 2r(0)). By a change of variables, we can come back to the domain
£2r(0) and the Neumann problem that we obtain satisfies the hypothesis of Proposition 1
on the regular domai®2y(0). This allows to obtain the same regularity result for the
density. By this way, after a finite number of steps, we reach the Zjjrfer an arbitraryx

and thus we conclude the proof of Theorem 1.
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