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Abstract

Objective: Multi Electrodes Arrays (MEAs) combined with cardiomy-
ocytes derived from human induced pluripotent stem cells (hiPSC-CMs)
can enable high- or medium-throughput drug screening in safety pharma-
cology. This technology has recently attracted a lot of attention, in par-
ticular from an international initiative named CiPA. But it is currently
limited by the difficulty to analyze the measured signals. We propose a
strategy to analyze the signals acquired by the MEA and to automatically
deduce the channels affected by the drug.

Methods: Our method is based on the bidomain equations, a model
for the MEA electrodes, and an inverse problem strategy.

Results: In silico MEA signals are obtained for two commercial de-
vices and an example of Early After Depolarization (EAD) is presented.
Then, by processing real signals obtained for four different compounds,
our algorithm was able to provide dose-response curves for potassium,
sodium and calcium channels. For ivabradine and moxifloxacin, the IC50
and dose-response curves are in very good agreement with known values.

Significance: The proposed strategy offers a possible answer to a major
question raised by the community of safety pharmacology. By allowing
a more automated analysis of the signals, our approach could contribute
to promote the technology based on MEA and hiPSC-CMs, and therefore
improve reliability and efficiency of drug screening.

1 Introduction

The objectives of Safety Pharmacology studies are to characterize, at the pre-
clinical stage, the potential pharmacodynamic effects of drug candidates on the
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main physiological functions, in the therapeutic range and above. This pre-
clinical discipline is mainly focused on the studies of unwanted effects of drug
candidates on cardiovascular and central nervous systems. The methods used to
achieve these missions cover a wide spectrum, spanning from in vitro to in vivo
models as well as to in silico modeling as tools used to anticipate the potential
issues as early as possible in development process. Amongst the cardiovascular
side effects that are studied, the electrophysiological effects of drug candidates
are of major importance since a significant part of drug development attrition
and drug market withdrawal are due to arrhythmogenic potential. An interna-
tional initiative under the umbrella of the US Food and Drug Administration,
Cardiac Research Safety Consortium, ILSI Health and Environmental Sciences
Institute, and Safety Pharmacology Society is aimed to address the propen-
sity for a drug to be pro-arrhythmic and/or arrhythmogenic. This initiative
was named CiPA for Comprehensive in vitro Pro-Arrhythmias assay [5,6]. The
CiPA paradigm has been designed to provide an accurate and comprehensive
assessment of the cardiac ventricular electrophysiological properties of drugs
candidates for identifying mechanisms that may mediate life-threatening ven-
tricular arrhythmias. The CiPA core components are the following: (i) In vitro
patch clamp assays using stably expressed recombinant human ion channels for
evaluating the effects of candidate drugs on major ion currents contributing to
human ventricle action potential (AP). (ii) An in silico AP assay is performed to
verify whether the integration of the data obtained in the patch-clamp assays is
indicative of pro-arrhythmic events on the human ventricular AP reconstructed
according to the O’Hara-Rudy model. (iii) An in vitro assay investigating the
effects of drug candidates on electrophysiological endpoints in ventricular car-
diomyocytes derived from human induced pluripotent stem cells (hiPSC-CMs).
A goal of this assay is to confirm and complement (if necessary) the in silico
predictions. One of the models selected for this purpose is the recording and
analysis of the electrical potential recorded from spontaneously beating hiPSC-
CMs maintained in culture in Multi Electrodes Arrays (MEA).

But several challenges remain. It is still difficult to obtain hiPSC-CM popula-
tions which are homogeneous and clearly differentiated into ventricular or atrial
cardiac cells with a known amount of fibroblasts. In addition, the electrical
potential measured with the MEA, called Field Potential (FP), is extracellular
and is therefore less familiar and much more difficult to analyse than the AP.

The purpose of this article is to show that mathematical modeling and com-
puter simulations may help decipher the FP and therefore contributes to pro-
mote this promising technology. By proposing an in silico approach of FP, this
work can be viewed as complementary of the current approaches of CiPA. It is
a step toward the automated identification of channel activity inferred from FP
signals. Combined with the high-throughput capabilities of the MEAs, it offers
a new strategy to evaluate the proarrhythmic risk of a drug.

Many in silico models have been proposed in the literature for the AP, based
on patch-clamp measurements (e.g. [17,18,20]), and several experimental studies
of the FP of hiPSC-CMs have been recently published (e.g. [3,14]). But to our
knowledge, in silico models of FP are still missing. We recently proposed such
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a model [1], where the effect of drugs in a heterogeneous media was investigated
through computer simulations. The present study is based on the same model,
but its main focus is to tackle the inverse problem of identifying some parameters
of the ionic currents from FP measurements.

The paper is organized as follows. The mathematical model, the MEA ge-
ometries and the parameter identification strategy are presented in Section 2.
Section 3 first shows some simulations of the forward model. Contrary to [1], it
is assumed here that the cells are homogeneous. This allows us to focus on other
sources of variability in the signals like the spatial propagation and the device
geometry. Two MEA devices are considered and the parameters of the electrode
model are discussed. Then a verification of the inverse problem is performed
on synthetic data and a discussion about the interest of using the measure-
ments given by several electrodes is proposed. Finally, the algorithm is tested
on four experimental datasets involving moxifloxacin, ivabradine, SEA0400 and
diltiazem.

2 Methods

The mathematical model used in this work has been recently introduced in [1].
In this section, we briefly present the model and the geometrical setting of two
commercial MEAs. Then, an inverse problem strategy is presented to identify
the parameters of the in silico model from FP signals.

2.1 Modeling of the cardiac electrical activity in the MEA

We make the hypothesis that the cardiomyocytes are homogeneous and spread
uniformly on a thin layer. The domain Ω representing the MEA and the cells
is therefore assumed to be two-dimensional. Our model is composed of three
components: a description of the ionic activity at the cell scale, a description
of the spatial electrical propagation at the MEA scale, and a model of the
microelectrodes.

2.1.1 The ionic model

There is a large variety of models of the transmembrane ionic current Iion. They
greatly differ in their level of details [7]. In the present work, three different ionic
models have been considered: Minimal Ventricular (MV) [4], Paci et al. [18] and
O’Hara et al. [17]. The reader is referred to the original publications for the
details. Schematically, the ionic current Iion depends on the transmembrane
potential Vm and on ionic variables w = (wj)1≤j≤M , solution of a system of
nonlinear ordinary differential equations. It is given by Iion =

∑
S IS where IS ,

the current carried by an ionic species S, has the general expression

IS = gS

M∏
j=1

w
pj
j (Vm − VmS). (1)
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Here, gS is a conductance coefficient, VmS is the Nernst equilibrium potential
of species S and pj are integers.

The MV model [4] describes a ventricular human cell in a simplified manner
through only three currents: fast inward, slow inward and outward currents. It
is based on the electrophysiological analysis of an AP that is the end-results
of several inward and outward currents carried by several ionic species flowing
through specific ion channels (the gating of which being mainly controlled by
membrane potential). The Paci model [18] describes a hiPSC-CM and the
O’Hara-Rudy model [17] describes a human ventricular cells derived from a large
set of experiments with human cardiomyocytes. The advantage of physiological
models, like these two, is that they give a detailed description of several ionic
currents. An interesting capability of the O’Hara-Rudy model is its capability
to model EADs, that can be viewed as an electrical signature of arrhythmias
occurrence. However, their parameters can be difficult to identify. For inverse
problems, MV therefore offers an interesting alternative.

The Paci model was slightly modified because the spontaneous beating of
this model leads to an homogeneous depolarization in the whole domain which
prevents the propagation of the signal: the current If was set to zero and the
sodium current was replaced by the O’Hara-Rudy one.

2.1.2 The bidomain model

To represent the spatial propagation of the potentials in Ω, we consider the
bidomain model [21]. This model describes the evolution of the transmembrane
potential Vm and the extracellular potential φe through two coupled partial
differential equations which can be found in the Supplementary Material S1.

2.1.3 Modeling of the microelectrodes

The field potential measured by an electrode ek is given by φkf = RiI
k
el where

Ri is the internal resistance of the measurement device. Denoting by Cel and
Rel the electrode capacitance and the electrode resistance, current Ikel is linked
to the mean extracellular potential φke,mean at the electrode by the equation

dIkel
dt

+
1

τ
Ikel =

Cel

τ

d

dt
φke,mean (2)

where τ = (Rel +Ri)Cel.

2.1.4 Geometrical modeling of two commercial devices

Two kinds of devices are considered: a 96-well MEA by Axion BioSystemsTMand
a 6-well MEA by Multichannel SystemsTM. Since the wells are independent from
each other, the simulations are run on a single well. In the 96-well MEA, the
disc-shaped well is made of 8 microelectrodes and 4 grounds around the elec-
trodes. In the 6-well MEA, the square-shaped well is made of 9 microelectrodes
and a ground at three sides of the square. The finite element meshes used in
the numerical simulation are reported in the Supplementary Material S2.

4



2.2 Identification of ionic currents from FPs

To identify the channel conductances of the ionic model from FP measurements,
we minimize a cost function which quantifies the discrepancy between the real
and the in silico field potentials. To do so, two types of cost functions have been
considered: one with the whole FP signals on a given time interval, the other
with only a few metrics (biomarkers) extracted from the signals.
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Figure 1: Biomarkers used in the inverse problems: depolarization amplitude
(DA), repolarization amplitude (RA) and field potential duration (FPD)

Let us present the two cost functions more precisely. Assume that the mea-
surements of the FPs are available at N electrodes during a time interval [0, T ].
The purpose is to identify some ionic model parameters, denoted by θ. In the
examples presented below, θ is a vector of channel conductances (gNa, gK , gCa)
appearing in the definition (1) of the ionic currents INa IK and ICa.

For the first cost function, we denote by φkf,ref the reference FP measured
at the k−th electrode which is a time-dependent function and we minimize the
following quantity with respect to θ:

J1(θ) =

N∑
k=1

∫ T

0

|φkf,ref(t)− φkf (θ, t)|2 dt, (3)

where φkf (θ, ·) is the time-dependent field potential φf taken at the k−th elec-
trode given by the resolution of the bidomain equations, (2) and the ionic model
with the parameter value θ.
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For the second cost function, we introduce three biomarkers represented in
Fig. 1: depolarization amplitude (DA), repolarization amplitude (RA) and field
potential duration (FPD). In the cost function to optimize, the values of these
biomarkers are rescaled with the biomarkers of a control case. This renormaliza-
tion is important in practice: it makes less critical to precisely fit the amplitude
of the experimental signal. The biomarkers associated with the reference signal
φkf,ref are denoted by DAk

ref , RAk
ref and FPDk

ref and the biomarkers associated

with the reference control signal by DAk
c,ref , RAk

c,ref and FPDk
c,ref . Then, the

following quantity is minimized with respect to θ:

J2(θ) =
∑N

k=1

(
DAk

ref

DAk
c,ref

− DAk(θ)
DAk

c

)2
+(

RAk
ref

RAk
c,ref

− RAk(θ)
RAk

c

)2
+
(

FPDk
ref

FPDk
c,ref

− FPDk(θ)
FPDk

c

)2 (4)

where DAk(θ), RAk(θ) and FPDk(θ) are the biomarkers of the signal φkf (θ, ·)
and DAk

c , RAk
c and FPDk

c are the biomarkers of the control signal given by the
model.

2.3 Numerical methods

Our in silico assays are based on the resolution of the bidomain equations cou-
pled to (2) and to one of the ionic models presented in section 2.1.1. The space
discretization is done with P1 finite element. The time discretization is done
with a Strang splitting, and a second order Backward Differentiation Formula
(BDF2), with variable time steps and inexact Newton method, provided by the
Sundials library [12]. The optimization problems corresponding to the parame-
ter identification are solved with the evolutionary algorithm CMA-ES [11].

3 Results

3.1 Numerical field potentials

In the following simulations, the parameters of the bidomain model are: Am =
1400 cm−1, Cm = 1µF cm−2, σi = 0.7µS cm−2, σe = 1.2µS cm−2. And the
electrode parameters are:

Ri = 290MΩ, Rel = 40MΩ and Cel = 2µF. (5)

In Figures 2 and 3, we have represented the numerical field potentials and
transmembrane potentials measured at several electrodes of a disc-shaped well
with 8 microelectrodes (Figures 2) and a square-shaped well with 9 microelec-
trodes (Fig. 3). These simulations have been performed with the Paci model [18],
slightly modified as explained above. We observe differences in the shape of FPs
between the two MEAs: in the disc-shaped well, the amplitude of the signal is
larger, less stiff and the repolarization phase is more visible than in the square-
shaped. In Fig. 3, it is worth noticing that the FP shape varies in amplitude
and orientation depending on the electrode.
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Figure 2: In silico transmembrane potential (dotted line) and field potential
(continuous line) at 4 different electrodes in a disc-shaped well with 8 micro-
electrodes, obtained by periodic stimulations.
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Figure 3: In silico transmembrane potential (dotted line) and field potential
(continuous line) at 4 different electrodes in a square-shaped well with 9 micro-
electrodes, obtained by periodic stimulations.
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The FP spatial variability is even more apparent in Fig. 4. This figure
illustrates the dependence of the signal measured at an electrode with respect
to the distance between the electrode and the location of the initial stimulation,
modeled by the applied current Iapp. It was also observed that the closer is the
initial stimulation to the measurement electrode, the larger is the negative peak
in depolarization. In [3], FPD recorded with a MED64 was found to be roughly
equal to APD50 estimated with voltage-sensitive dye. As a first approximation,
our simulations are not far from this observation, but the precise relationship
seems to depend on the device, the electrode and the drug concentration (see
Supplementary material S3).
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Figure 4: In silico field potentials for different source localizations

The influence of the electrode parameters is illustrated in Figures 5 and
6 where the depolarization phase of the field potential is plotted for different
values of Rel and Cel.

As indicated in Fig. 5, the increase of the resistance Rel induced a decrease
in the signal amplitude. The same observation was made with the resistance
Ri. The decrease of the capacitance Cel induced a distortion of the signal and a
decrease of the signal amplitude (Fig. 6). With the ranges of values considered
for the resistance and capacitance (5), their effect is very limited and the field
potential φf is very similar to the extracellular potential φe. Varying the resis-
tances or conductances in our model could be a way to model the quality of the
adhesion of the cells to their support. This aspect was not further investigated
in the present study.
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Figure 5: In silico depolarization phase of the field potential for different values
of the electrode resistance Rel.
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Figure 6: In silico depolarization phase of the field potential for different values
of the electrode capacitance Cel.

3.2 Early afterdepolarization (EAD)

For the applications in safety pharmacology, it is important to assess that our
model is able to correctly reproduce the Field Potential observed in presence of
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an Early After Depolarizations (EADs, see for example [15]). To generate an
EAD, we block 95% of IKr in the O’Hara-Rudy model [17], while all the other
parameters of the model remain unchanged. The results are reported in Fig. 7.
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Figure 7: In silico transmembrane potential (top), field potential (bottom) cor-
responding to an EAD. Comparison with the control case (dotted line).

The AP behaves as expected (Fig. 7 top). The FP generated by our model
exhibits a positive deflection in absence of EAD and a slightly negative deflection
in presence of EAD (Fig. 7 bottom).

3.3 Identification of conductances in the ionic current

The results obtained for the identification of channel conductances are presented
in this section. In paragraph 3.3.1, the algorithm presented in section 2.2 is
verified by solving the identification problem in a situation where the results
are known. To do so, synthetic measurements are first generated by numerical
simulations. Then the channel conductances retrieved by the cost function
optimization can be compared to the values used to generate the data. In
paragraph 3.3.3, we use real in vitro experiments for different drugs and present
the dose-response curves found by the algorithm.

For these simulations, the MV model was used. The ionic current is de-
composed into three currents: the fast inward, slow inward and slow outward
currents which, for simplicity, are assimilated to Na+, Ca2+ and K+ respectively.
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3.3.1 Verification with synthetic data

The inverse problem strategy was tested to identify the conductances of the Na+

and Ca2+ channels from synthetic data. Numerical simulations are first used
to generate the reference measurements represented by the continuous lines in
Fig. 8. The black continuous line corresponds to the control case. The other
continuous lines are obtained by partially blocking the activities of the Na+

and Ca2+ currents. The percentage of activity of Na+ and Ca2+ are given in
Table 1. The activity was set to 100% in the control case.
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Figure 8: Depolarization and repolarization phases of the in silico field po-
tentials in the assimilation process. The continuous lines correspond to the
reference case and the dotted lines to the signal recovered by the assimilation
process. The control case is represented in black and the curves are lighter when
the activity of Na+ and Ca2+ decreases (values are given in Table 1).

Then, for each concentration, we minimize the cost function (4) which in-
volves the biomarkers DA, RA and FPD associated with the signals. To assess
the stability of the process, we introduce a bias by choosing a set of model
parameters different from the one used to generate these reference FPs.

The results of the assimilation process are given in the second column of
Table 1 and the corresponding signals are represented by the dotted lines in
Fig. 8. The last column of Table 1 contains the relative error between the
reference values (the targets) and the values estimated by the algorithm. It
can be observed that, for each measurement, the identification process succeeds
in finding the reference values with a good accuracy. It is not surprising to
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obtain a non-vanishing discrepancy since a bias was introduced in the synthetic
measurements.

3.3.2 Influence of the number of electrodes

Target Estimation Relative error (in %)
Case 1 (96, 92) (94, 93) 1.7
Case 2 (78, 85) (78, 88) 2.6
Case 3 (71, 80) (73, 85) 4.8

Table 1: Estimation of the activity of the Na+ and Ca2+ channels (the control
case corresponds to an activity equal to 100%).

In the resolution of the inverse problem, we have used the FP signals collected
at a given number of electrodes. It is of practical interest to wonder if it is
important to take several electrodes and if the choice of the electrodes has an
impact on the accuracy of the results given by our identification process.

In Fig. 9, the relative error between the value found by the identification
process and the reference value is presented for different electrode selections.
These tests have been made with the cost function (3) which involves the whole
FP. We observe that the relative error largely varies from case to case. Even if
the error may be small with only one or two electrodes, this performance depends
on the selection of the electrodes, and that itself depends on the location of the
initial activation, which is a priori unknown. Thus, these tests suggest that it
is safer to use all the measurements collected by the electrodes.

3.3.3 Tests with experimental measurements

We now consider in vitro FPs recorded in the presence of different drugs.
All the data were provided by Janssen Pharmaceutica NV using MC Rack
(Multi Channel Systems GmbH) and post-processed by NOTOCORD Systems
(NOTOCORD-FPS 3.0 software). The cells were produced by Cellular Dy-
namics International (type iCell R© Cardiomyocytes, 2012). Fig. 10 shows an
example of FPs recorded at the 9 microelectrodes of a 6-well MEA. Another
illustration of in vitro FPs is given in Fig. 11 which shows FPs recorded for
different concentrations of moxifloxacin.

Our objective is to identify the activity of the Na+, K+ and Ca2+ channels
for each drug concentration. To achieve this goal, the cost function (4), which
measures the discrepancy between the biomarkers, was minimized. For the
control case and different drug concentrations, the biomarkers DA, RA and
FPD associated with the mean FP are extracted at each electrode of the MEA
and these data are used as the reference biomarkers in the cost function (4).

In the following paragraphs, the effects of moxifloxacin, ivabradine, SEA0400
and diltiazem on FPs are presented. It was observed that a blockage of the K+
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gfi assimilation with noised observations

Error: 18.25% Error: 14.75% Error: 13.50% Error: 7.75%

Error: 7.50% Error: 3.50% Error: 3.50% Error: 3.25%

Error: 2.40% Error: 2.23% Error: 1.75% Error: 0.75%

Figure 9: For each well, only the measurements given by the electrodes repre-
sented by the continuous black points are used in the identification algorithm.
The location of the initial stimulation is represented by a cross. The error cor-
responds to the relative error between the reference values and the values given
by the identification algorithm.

channel induced an increase in the FPD, while a blockage of the Ca2+ induced
a decrease in the FPD. Based on this simple observation, we decided to fix the
value of the conductance of one of those two channels. This manual preprocess-
ing simplifies the task of the optimization algorithm and limits identifiability
issues. Following this guideline, and considering the experimental FPD evolu-
tion, the activity of the Ca2+ channel was fixed for moxifloxacin and ivabradine,
as was fixed the activity of the K+ channel for diltiazem and SEA0400.

The results of the optimization process are summarized in the dose-response
curves depicted in Figures 12, 13, 14 and 15 which show the ion channel relative
conductances under the action of the four different drugs.

For moxifloxacin and ivabradine, which are known to be potassium blockers,
the algorithm correctly captures the effect of the drug, not only qualitatively
but also quantitatively. Indeed, the dose-response curve obtained by parameter
identification is in good agreement with the theoretical dose-response curve,
represented in dotted lines in Figures 12 and 13. The theoretical curve is given
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Figure 10: Example of in vitro FPs recorded (depolarization phase).

Figure 11: Effects of moxifloxacin on in vitro FPs recorded at different concen-
trations.

by (
1 +

[c]

IC50

)−1
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Figure 12: Moxifloxacin effect on each ion channel activity (in vitro data).

10-4 10-3 10-2 10-1 100 101

Concentration (µM)
0.2

0.4

0.6

0.8

1.0

Ch
an

ne
l a

ct
iv

ity

Na+  channel
K+  channel

Ca2 +  channel
Theoretical curve

Figure 13: Ivabradine effects on each ion channel activity (in vitro data).

where the values of IC50 of the current IK are taken from the literature: for
moxifloxacin, IC50 = 114µM [2] and for ivabradine, IC50 = 2.07µM [16].

SEA0400 is known to be a Na-Ca exchanger blocker and it has also been
shown to be L-type calcium channel blocker above 1 µM [19]. Fig. 14 shows that
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Figure 14: SEA0400 effects on each ion channel activity (in vitro data).
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Figure 15: Diltiazem effects on each ion channel activity (in vitro data).

the algorithm succeeds in detecting that Na+ and Ca2+ channels are affected
under the action of this compound.

Fig. 15 shows that the algorithm detects an impact of diltiazem on the Ca2+

channel, but also on the Na+ channel. These results are concordant with the
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well-established calcium antagonist properties of diltiazem [10], as well with
those suggesting that diltiazem affect Nav1.5 channel activity at high concen-
trations [13].

As an example, Table 2 shows in the case of moxifloxacin the results achieved
by the optimization process for the five concentrations used for the data repre-
sented in Fig. 11. The discrepancy between the experimental biomarkers and
the biomarkers found at the end of the parameter identification process is gen-
erally less than 10%. Similar results are obtained for diltiazem, ivabradine and
SEA0400 (Suppl. Material S4).

Table 2: Experimental and numerical biomarkers after the identification process
for moxifloxacin. The good agreement shows that the cost function reaches a
low value.

We report the whole in silico signals obtained at the end of the identifica-
tion process in the Supplementary Materials S5. We also show results of the
identification using the Paci model (Supplementary Material S6).

4 Discussion

In silico approaches of MEA measurements are not very common in the litera-
ture. The first goal of this study was, therefore, to show that a mathematical
model is actually able to provide realistic synthetic signals. The results obtained
for two commercial devices (Fig. 2 and 3) are in a good qualitative agreement
with the signals observed in reality. In the simulation of a FP during an EAD
(Fig. 7), the deflection may be difficult to identify if considered alone, but it
is clearly visible if compared to the case without EAD (dashed line in Fig. 7).
Besides, this kind of slight deflections is in good agreement with MEA exper-
imental measurements of EADs reported in the literature (see e.g. Fig. 5 (D)
in [3]).

The strong variability of experimental signals did not allow us to make a more
quantitative validation. Nevertheless, the results obtained with our strategy of
parameter identification show that this level of realism seems to be sufficient to
address questions of practical relevance.

An appealing feature of the in silico approach is its capability to isolate
phenomenon and to test hypotheses more easily than in real experiments. For
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example, it is not straightforward to experimentally understand the variability
observed in the FP within a MEA well. A classical explanation is the hetero-
geneity of the hiPSC-CM population [8]. In this work, we showed in silico that
FP variations appear even with a homogeneous population of cells (Figures 3
and 4). Our simulations showed that these variations, both in amplitude and in
orientation, are linked to different geometrical factors: the size of the MEA, the
inter-electrode distance, the position of the ground and the relative positions of
the measurement electrode and the initial activation. Thus, the electrode-to-
electrode variability of the FP is dependent on the type of MEA device.

The identification of channel activities from FP measurements is the most
practical result of the present work. We showed that, even when the model does
not quantitatively reproduce the real signal, it is still possible to automatically
detect which channel is affected by renormalizing the biomarkers with a control
case. Thus it is not necessary to perfectly know all the parameters of the
model (electrical conductivities, location of the original activation, etc.), as
soon as those parameters do not significantly affect the drug-induced evolution
of the biomarkers with respect to their control values. Our strategy allowed
us to estimate the dose-response curve from four experimental datasets. For
moxifloxacin and ivabradine, the algorithm was even able to recover the IC50
with a good accuracy.

In spite of these promising results, the limitations of the approach are the
following:

(i) The choice of the bidomain equations to describe the diffusion of the
potential in the MEA can be criticized since there is no clear scale separation
between the size of the electrode and the size of the cells. An alternative would
consist of an individual description of each cell. This would be much more
demanding from a computational viewpoint and this would certainly raise many
other modeling issues. That is why the approximation of a homogenized medium
was regarded as a starting point. The obtained results seem to validate this
choice a posteriori.

(ii) The ionic model is also a critical ingredient. The Paci model was specif-
ically designed to describe hiPSC-CM and should therefore be firstly selected.
But, at the moment, there is still a strong variability in the stem cells produced
by different manufacturers. Besides, like the O’Hara-Rudy model, it relies on
many parameters which are difficult, or even impossible, to identify from the
FP. The choice to solve the inverse problem with the MV model is, therefore,
a compromise between realism and identifiability issues. We have nevertheless
checked that it was also possible to solve an inverse problem with the Paci model
(Supplementary Materials).

In Fig. 12-15, it can be observed that the activity of the sodium channel is
not monotonic with respect to the concentration. The reason for this strange
behavior is probably the high sensitivity of the fast inward conductance of the
MV model with respect to the depolarization amplitude. This point deserves a
deeper investigation, in particular with other compounds and other ionic models.

It should also be noted that the equations depend on several parameters
which are essentially unknown: Am, Cm, Rel, Ri, Cel, σi, σe, zthick, location
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of the initial activation, etc. Some of them could be estimated by direct mea-
surements (e.g. [9]). This was not done in this study. Instead, their values
were fixed to recover the main features of the experimental data (global shape,
propagation velocity). With the strategy consisting in measuring the evolution
of the biomarkers with respect to a control value, this choice was shown to be
sufficient.

5 Conclusion

MEAs, combined with hiPSC-CMs, can enable high- or medium-throughput
drug screening in safety pharmacology. But this promising technology is cur-
rently limited by the difficulty to analyze the measured FP. In the present work,
we proposed a strategy to analyze the FP acquired by the MEA and to auto-
matically deduce the ionic channels affected by a compound. The method relies
on a mathematical model of the cells in the MEA, and on an inverse problem
algorithm. We first showed that the model was able to reproduce features ac-
tually observed in real experiments. Then, we tested our strategy on real data
and we were able to identify the channels affected by four compounds.

Many aspects of our strategy could be improved: ionic models tailored to
specific stem cells could be considered; other biomarkers could be introduced to
limit the identifiability issues; a more systematic way to set the model param-
eters could be devised; our approach could be combined with other modalities,
like fluorescence. Besides, the preliminary results presented in this article have
to be confirmed with more compounds. This is the topic of current investiga-
tions.

To conclude, it should be noticed that pharmacological tests are much easier
to perform with MEAs than with more traditional techniques. This allows a
huge quantity of data to be acquired. MEAs measurements will therefore not
only benefits from in silico approaches, but they will also certainly contribute
to improve them.
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SUPPLEMENTARY MATERIAL

S1 Bidomain equations

Our mathematical model of MEA is based on the bidomain equations which
describe the evolution of the transmembrane potential Vm and the extracellular
potential φe through two coupled partial differential equations:

AmCm
∂Vm
∂t

+AmIion(Vm, w)−∇ · (σi∇Vm)−
∇ · (σi∇φe) = AmIapp

−∇ · ((σi + σe)∇φe)−∇ · (σi∇Vm) = 1
zthick

∑
ek

Ikel
|ek|

χek ,

(6)

where Am is the surface area of membrane per unit volume of tissue, Cm is
the membrane capacitance, Iapp is the current applied in the stimulation area,
σi and σe correspond respectively to the intra- and extracellular conductivity
tensors and zthick is the thickness of the cell layer. The ionic current Iion is
provided by an ionic model. The signal is triggered by the stimulation current
Iapp, applied in an arbitrary zone of the MEA surface. The right-hand side of
the second equation is due to the presence of the electrodes. In this expression,
Ikel is the electric current which goes through the electrode located at ek, |ek| is
the electrode surface and χek is the characteristic function of ek (which takes
the value 1 on the electrode and 0 elsewhere). The expression of Ikel is given in
the following paragraph. Let n be the outward normal to the boundary of the
domain. Equations (6) are completed with the following boundary conditions:
σi∇φi ·n = 0 (where φi = Vm + φe), and either φe = 0 on the region connected
to the ground or σe∇φe · n = 0 elsewhere.

S2 Geometrical modeling of two commercial de-
vices

In the 96-well MEA, the disc-shaped well is made of 8 microelectrodes and 4
grounds located around the electrodes (Figure S1 top). In the 6-well MEA, the
square-shaped well is made of 9 microelectrodes and a ground which is located
at three sides of the square (Figure S1 bottom). Figure S1 shows the finite
element meshes used in the numerical resolution.

S3 Relationship between FPD and APD

In reference [3], K. Asakura et al. measured simultaneously APD with voltage-
sensitive dye and FPD in a dish-shaped well of a Multi Electrode Array of type
MED64. They found that FPD recorded was roughly equal to APD50. As a
first approximation, our simulations are not far from this observation.
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Figure S1: Geometry of the MEA wells and the finite element meshes: disc-
shaped well with 8 microelectrodes in the 96-well MEA (top), square-shaped
well with 9 microelectrodes in the 6-well MEA (bottom). The electrodes are
represented by the small rings and the grounds by the dotted lines.
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But more in details, Figures S2 and S3 show that the relationship between
the simulated FDP and APD seems to depend on the device, on the drug con-
centration, and on the electrodes. In the 8-electrode MEA, the FPD corresponds
approximatively to the APD65 (Figure S2) whereas in the 9-electrode MEA it
is about APD45 (Figure S2).
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Figure S2: Comparison between FPD and APD using results from Moxifloxacin
parameter identification (MEA with 8 electrodes per well).

S4 Experimental and numerical biomarkers af-
ter identification

Experimental and numerical biomarkers after the identification process are pre-
sented for diltiazem (Table S1), ivabradine (Table S2) and SEA0400 (Table S3).

S5 In silico Field Potentials after identification

As explained in Sections II.B and III.C, when dealing with real data, the inverse
problem is solved by reducing the misfit between ratios of biomarkers. The rele-
vant quantities to compare at the end of the identification process are therefore
those presented in Table II of the article. Nevertheless, it is legitimate to wonder
what is the shape of the full numerical FP signal after identification. This is
shown in Figure S4 in the case of moxifloxacin. Comparing this figure with the
experimental FPs displayed in Fig. 11 of the article, we observe that the in silico
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Figure S3: Comparison between FPD and APD using results from Moxifloxacin
parameter identification (MEA with 9 electrodes per well).

Table S1: Ratio comparison after parameter identification using diltiazem data
as observation.

Table S2: Ratio comparison after parameter identification using ivabradine data
as observation.
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Table S3: Ratio comparison after parameter identification using SEA0400 data
as observation.

FP signals capture the main trends of the experimental FPs. It is nevertheless
clear that the two signals cannot be superimposed, which is consistent with our
choice of comparing biomarkers ratios rather than the full signal.

Figure S4: Effects of moxifloxacin on in silico FPs at the end of the identification
process using MV model.

S6 Identification results with the Paci model

In Section III.C of the article, the conductances were estimated for the MV
model. We show here that it can also be performed for the Paci model. The
identification is restricted here to the single potassium channel. The result is
presented in Figure S5 for moxifloxacin. As with the MV model, the agreement
with the theoretical curve is very satisfactory.
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Figure S5: Identification of the moxifloxacin effects on the potassium channel
activity using the Paci model.

S7 Computational time

All the simulations were run on a HP Z820, with 12 processors Intel R© Xeon R©

CPU E5-2640 0 @ 2.50GHz, and the operating system Linux Ubuntu 12.04.4
LTS 64-bit. The computational time for the forward problems was about 8
minutes with the MV model and 50 minutes with the Paci model. The com-
putational time for the inverse problems was about 20 hours to identify 2 pa-
rameters in the MV model, and 17 hours to identify 1 parameter in the Paci
model. For the inverse problems, the CMA-ES algorithm was run in parallel on
10 processors.
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