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Abstract—This paper deals with the numerical simulation of
electrocardiograms (ECG). Our aim is to devise a mathe-
matical model, based on partial differential equations, which
is able to provide realistic 12-lead ECGs. The main ingredi-
ents of this model are classical: the bidomain equations
coupled to a phenomenological ionic model in the heart, and
a generalized Laplace equation in the torso. The obtention of
realistic ECGs relies on other important features—including
heart–torso transmission conditions, anisotropy, cell hetero-
geneity and His bundle modeling—that are discussed in
detail. The numerical implementation is based on state-
of-the-art numerical methods: domain decomposition tech-
niques and second order semi-implicit time marching
schemes, offering a good compromise between accuracy,
stability and efficiency. The numerical ECGs obtained with
this approach show correct amplitudes, shapes and polarities,
in all the 12 standard leads. The relevance of every modeling
choice is carefully discussed and the numerical ECG sensi-
tivity to the model parameters investigated.

Keywords—12-Lead electrocardiogram, Mathematical mod-

eling, Numerical simulation, Bidomain equation, Ionic

model, Heart–torso coupling, Monodomain equation, Sen-

sitivity analysis.

INTRODUCTION

The electrocardiogram (ECG) is a noninvasive
recording of the electrical activity of the heart,
obtained from a standard set of skin electrodes and
presented to the physician as the ‘‘12-lead ECG’’: i.e.,
12 graphs of the recorded voltage vs. time. The ECG
can be considered as the most widely used clinical tool
for the detection and diagnosis of a broad range of
cardiac conditions (see e.g. Aehlert,1 Goldberger24).

Despite that, the clinical significance of some ECG
findings is still not fully understood. Computer based
simulations of the ECG, linking models of the electri-
cal activity of the heart (in normal or pathological
condition) to the ECG signal, can therefore be a
valuable tool for improving this knowledge. Such an
ECG simulator can also be useful in building a virtual
data base of pathological conditions, in order to test
and train medical devices.16 Moreover, being able to
simulate realistic ECGs is a necessary step toward the
development of patient-specific models from clinical
ECG data.

The mathematical modeling of the ECG is known as
the forward problem of electrocardiography.32 It relies
on three main ingredients: a model for the electrical
activity of the heart, a model for the torso (extracar-
diac regions) and some specific heart–torso coupling
conditions. Within each of these components, several
options are possible, with different levels of complexity
and realism (see Lines et al.32 for a recent compre-
hensive review).

Although many works have been devoted to the
numerical simulation of cardiac electrophysiology (see
e.g. the monographs44,47,51 and the references therein),
only a small number28,30,32,41,43,54 addresses the
numerical simulation of ECGs using a whole-heart
reaction-diffusion (i.e. bidomain or monodomain)
model. Among them, only a very few41,43 provide
meaningful simulations of the complete 12-lead ECG.
These simulations rely on a monodomain description of
the electrical activity of the heart, a decoupling of the
heart and the torso (isolated heart assumption) and a
multi-dipole approximation of the cardiac source within
the torso (see Sect. 4.2.4 in Lines et al.,32 and Gulra-
jani26). To the best of our knowledge, none of the
existing approaches based on partial differential equa-
tions (PDE) anda fully coupled heart–torso formulation
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(see e.g. Sect. 4.6 in Lines et al.,32 and Sundnes et al.51)
have shown realistic 12-lead ECG simulations.

The main ingredients of our mathematical ECG
model are standard (see e.g. Lines et al.,32 Pullan
et al.,44 Sundnes et al.51): bidomain equations and
phenomenological cell model for the heart, and a
generalized Laplace equation for the torso. Neverthe-
less, once these ingredients have been chosen, several
other critical aspects have to be elucidated: heart–torso
transmission conditions, cell heterogeneity, His bundle
modeling, anisotropy, etc.

The purpose of the present work is therefore twofold:
first, provide realistic simulations of the 12-lead ECG
based on a complete PDE model with a fully coupled
heart–torso formulation; second, discuss through
numerical simulations the impact of various modeling
options and the sensitivity to the model parameters.
Note that the achievement of these two goals is a fun-
damental step prior to addressing the inverse problem of
electrocardiography, which consists in identifying the
ECG model parameters from clinical ECG data.

The numerical methods proposed to solve the prob-
lem offer a good balance between efficiency, stability
and accuracy. The PDE system made of the heart and
torsomodels is solved using a finite element method and
a second order semi-implicit time marching scheme (see
e.g. Quarteroni et al.45). The coupling conditions at
the heart–torso interface are enforced by a Dirichlet-
Neumann domain decomposition algorithm (see e.g.
Quarteroni and Valli,46 Toselli and Widlund53).

The remainder of this paper is organized as follows.
The ECG model equations are presented in ‘‘Model-
ing’’ section. The section ‘‘Numerical Methods’’ is
devoted to the description of the numerical algorithm.
The numerical ECGs obtained with the resulting
computational model, under a healthy and a patho-
logical (bundle branch block) condition, are presented
and discussed in ‘‘Numerical Results’’ section. The
section ‘‘Impact of Some Modeling Assump-
tions’’ investigates the impact, on the ECG, of various
modeling assumptions: heart–torso uncoupling, mon-
odomain approximation, isotropy, cell homogeneity,
resistance–capacitance behavior of the pericardium. In
‘‘Numerical Investigations with Weak Heart–Torso
Coupling’’ section, we present a time and space con-
vergence study in terms of the ECG. The sensitivity of
the ECG to the main model parameters is also inves-
tigated. At last, conclusions and some lines of forth-
coming research are drawn in ‘‘Conclusion’’ section.

MODELING

This section contains standard material (see e.g.
Chapter 2 in Sundnes et al.51). It introduces notation

and the coupled system of partial and ordinary dif-
ferential equations (PDE/ODE) involved in the refer-
ence mathematical model considered in this paper.

Heart Tissue

Our reference model for the electrical activity of the
heart is the so-called bidomain model.44,51,55 This
macroscopic model is based on the assumption that, at
the cell scale, the cardiac tissue can be viewed as par-
titioned into two ohmic conducting media, separated
by the cell membrane: intracellular, made of the car-
diac cells, and extracellular which represents the space
between them. After an homogenization process (see
Neu and Krassowska,37 Pennacchio et al.39), the intra-
and extracellular domains can be supposed to occupy
the whole heart volume XH (this also applies to the cell
membrane). Hence, the averaged intra- and extracel-
lular densities of current, ji and je; conductivity tensors,
ri and re; and electric potentials, ui and ue, are defined
in XH. The electrical charge conservation becomes

divðji þ jeÞ ¼ 0; in XH; ð2:1Þ

and the homogenized equation of the electrical activity
of the cell membrane is given by

Am Cm
@Vm

@t
þ IionðVm;wÞ

� �
þdivðjiÞ ¼AmIapp; inXH;

ð2:2Þ

complemented with the Ohm’s laws

ji ¼ �rirui; je ¼ �rerue: ð2:3Þ

Here, Vm stands for the transmembrane potential,
defined as

Vm ¼
def

ui � ue; ð2:4Þ

Am is a constant representing the rate of membrane
area per volume unit and Cm the membrane capaci-
tance per area unit. The term Iion(Vm, w) represents the
ionic current across the membrane and Iapp a given
applied current stimulus. Both currents are measured
per membrane area unit.

In general, the ionic variable w (possibly vector
valued) satisfies a system of ODE of the type:

@w

@t
þ gðVm;wÞ ¼ 0; in XH: ð2:5Þ

The definition of the functions g and Iion depends on the
considered cell ionic model (see Pullan et al.,44 Sundnes
et al.,51 Tung,55 and the references therein). According
to their degree of complexity and realism, the ionic
models typically fall into one of the following categories
(see Chapter 3 in Pullan et al.44): phenomenological
(e.g. Fenton and Karma,18 Fitzhugh,19 Mitchell and
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Schaeffer,36 and van Capelle and Durrer56) or physio-
logical (e.g. Beeler and Reuter,4 Djabella and Sorine,15

Luo and Rudy,33,34 and Noble et al.38).
In this study, the phenomenological two-variable

model proposed by Mitchell and Schaeffer36 is con-
sidered (rescaled version). The functions g and Iion are
then given by

IionðVm;wÞ ¼ �
w

sin

ðVm � VminÞ2ðVmax � VmÞ
Vmax � Vmin

þ 1

sout

Vm � Vmin

Vmax � Vmin
;

gðVm;wÞ ¼
w

sopen
� 1

sopenðVmax�VminÞ2
if Vm<Vgate;

w
sclose

if Vm>Vgate;

(

ð2:6Þ

where sin, sout, sopen, sclose, Vgate are given parameters
and Vmin, Vmax scaling constants (typically �80 and
20 mV, respectively).

Despite its reduced complexity (2 state variables, 5
free parameters), the Mitchell-Schaeffer model inte-
grates relevant physiological properties of the cell mem-
brane: transmembrane potential, activation dynamics
and two currents (inward and outward) leading to
depolarization and repolarization. Moreover, owing to
its planar character, the model can be understood ana-
lytically (see e.g.Mitchell and Schaeffer36), which allows
to identify how the free parameters affect its behavior
(see ‘‘Cell Heterogeneity’’ section).

The gate variable w depends on the change-over
voltage Vgate and on the time constants for opening,
sopen, and closing, sclose. The time constants sin and
sclose are respectively related to the length of the
depolarization and repolarization (final stage) phases.
Typically, these constants are such that sin �
sout � sopen, sclose.

To sum up, the system of equations modeling the
electrical activity within the heart is

Am Cm
@Vm

@t þ IionðVm;wÞ
� �
�divðri$VmÞ � divðri$ueÞ ¼ AmIapp; in XH;
�divððri þ reÞ$ueÞ � divðri$VmÞ ¼ 0; in XH;
@w
@t þ gðVm;wÞ ¼ 0; in XH;

8>><
>>:

ð2:7Þ

with g and Iion given by (2.6). This system has to be
complemented with appropriate initial and boundary
conditions. Denoting by V0

m and w0 given initial data
for the transmembrane potential and the gate variable,
the following initial condition must be enforced

Vmðx;0Þ ¼V0
mðxÞ; wðx;0Þ ¼w0ðxÞ 8x2XH: ð2:8Þ

As regards the boundary conditions on R ¼def @XH (see
Fig. 1), it is widely assumed (see e.g. Krassowska and

Neu,31 Pullan et al.,44 Sundnes et al.,51 and Tung55)
that the intracellular current does not propagate out-
side the heart. Consequently,

ji � n ¼ rirui � n ¼ 0; on R;

where n stands for the outward unit normal to XH.
Equivalently, and owing to the divergence structure of
(2.7)1, this condition can be enforced as

rirVm � nþ rirue � n ¼ 0; on R: ð2:9Þ

Coupling with Torso

To set up boundary conditions on the extracellular
potential ue, a perfect electric transmission between the
heart and the torso domains is generally assumed (see
e.g. Krassowska and Neu,31 Pullan et al.,44 Sundnes
et al.,51 and Tung55):

ue ¼ uT; on R;
re$ue � n ¼ rT$uT � n; on R:

�
ð2:10Þ

Here, uT and rT stand respectively for the potential
and conductivity tensor of the torso tissue, denoted by
XT (see Fig. 1). Note that, with (2.9), the current conti-
nuity condition (2.10)2 is consistent with the divergence
structure of (2.7)2. Other possible heart–torso trans-
mission conditions will be discussed in ‘‘Heart–Torso

FIGURE 1. Geometry description: the heart domain XH and
the torso domain XT (extramyocardial regions).
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Uncoupling’’ and ‘‘Capacitive and Resistive Effect of
the Pericardium’’ sections.

Under the quasi-static assumption,35 the torso can
be viewed as a passive conductor. Therefore, the
potential uT satisfies the generalized Laplace equation:

div rTruTð Þ ¼ 0; in XT: ð2:11Þ

This equation is complemented with a boundary
condition on the external boundary Cext ¼def @XT n R
(see Fig. 1). Moreover, assuming that no current can
flow from the torso across Cext, we enforce

rTruT � nT ¼ 0; on Cext; ð2:12Þ

where nT stands for the outward unit normal to XT.
In summary, our reference model for the ECG is

based on the coupled solution of systems (2.7), (2.6) and
(2.11), completed with the boundary conditions (2.9)
and (2.12), the interface conditions (2.10) and the initial
condition (2.8). Throughout this study, this system of
equations will be termedRM (referencemodel), which is
also known in the literature as full bidomain model (see
e.g. Clements et al.9). The interested reader is referred to
Boulakia et al.7 for a recent study on the mathematical
well-posedness of this system, under appropriate
assumptions on the structure of Iion and g.

Although additional complexity and realism can
still be introduced through the ionic model (see e.g.
Beeler and Reuter,4 Djabella and Sorine,15 Luo and
Rudy,33,34 and Noble et al.38), this coupled system can
be considered as the state-of-the-art in the PDE/ODE
modeling of the ECG (see e.g. Lines et al.32).

NUMERICAL METHODS

This section is devoted to a brief presentation of the
numerical method used to solve the coupled problemRM.

Space and Time Discretization

The discretization in space is performed by applying
the finite element method to an appropriate weak
formulation of this coupled problem. Let X be the
interior of XH [ XT: Problem RM can be rewritten in
weak form as follows (see e.g. Boulakia et al.7): for
t> 0, find Vm(Æ, t) 2 H1(XH), w(Æ, t) 2 L¥(XH) and
u(Æ, t) 2 H1(X), with

R
XH

u ¼ 0; such that

Am

R
XH

Cm
@Vm

@t þ IionðVm;wÞ
� �

/
þ
R

XH
ri$ðVm þ uÞ � $/ ¼ Am

R
XH

Iapp/;R
XH
ðri þ reÞ$u � $wþ

R
XH

ri$Vm � $w
þ
R

XT
rT$u � $w ¼ 0;

@w
@t þ gðVm;wÞ ¼ 0; in XH;

8>>>>><
>>>>>:

ð3:13Þ

for all ð/;wÞ 2 H1ðXHÞ �H1ðXÞ; with
R

XH
w ¼ 0: The

potentials in the heart and the torso are recovered by

setting ue ¼ ujXH
and uT ¼ ujXT

: Note that this weak
formulation (3.13) integrates, in a natural way, the
coupling conditions (2.10).

The space semi-discretized formulation is based
on (3.13) and obtained by replacing the functional
spaces by finite dimensional spaces of continu-
ous piecewise affine functions, Vh � H1ðXHÞ and
Wh � H1ðXÞ:

The resulting system is discretized in time by com-
bining a second order implicit scheme (backward dif-
ferentiation formulae, see e.g. Quarteroni et al.45) with
an explicit treatment of the ionic current. We refer to
Ethier and Bourgault17 for a recent review which
suggests the use of second order schemes. Let N 2 N�

be a given integer and consider a uniform partition
f½tn; tnþ1�g0�n�N�1; with tn ¼

def
ndt; of the time interval of

interest [0, T], with a time-step dt ¼defT=N: Denote by
ðVn

m; u
n;wnÞ the approximated solution obtained at

time tn. Then, ðVnþ1
m ; unþ1;wnþ1Þ is computed as fol-

lows: For 0 £ n £ N � 1

1. Second order extrapolation: eVnþ1
m ¼def 2Vn

m�
Vn�1

m ;
2. Solve for wn+1 2 Vh:

1

dt
3

2
wnþ1� 2wnþ 1

2
wn�1

� �
þ gð eVnþ1

m ;wnþ1Þ ¼ 0;

(nodal-wise);

3. Ionic current evaluation: Iion eVnþ1
m ;wnþ1

� �
;

4. Solve for Vnþ1
m ; unþ1

� �
2 Vh �Wh; withR

XH
unþ1 ¼ 0:

Am

R
XH

Cm

dt
3
2V

nþ1
m � 2Vn

m þ 1
2V

n�1
m

� �
/

þ
R

XH
ri$ Vnþ1

m þ unþ1
� �

� $/

¼ Am

R
XH

Iapp tnþ1ð Þ � Iion eVnþ1
m ;wnþ1

� �� �
/;R

XH
ri þ reð Þ$unþ1 � $wþ

R
XH

ri$Vnþ1
m � $w

þ
R

XT
rT$unþ1 � $w ¼ 0;

8>>>>>><
>>>>>>:

ð3:14Þ

for all (/, w) 2 Vh 9 Wh, with
R

XH
w ¼ 0:

Finally, set unþ1e ¼ unþ1jXH
and unþ1T ¼ unþ1jXT

:

The above algorithm is semi-implicit (or semi-
explicit) since, owing to the extrapolation Step 1, it
allows the uncoupled solution of Steps 2 and 4,
which are computationally demanding. The inter-
ested reader is referred to Sect. 4.6 in Lines et al.32

for an analogous approach, using a different time
discretization scheme and to Colli Franzone and
Pavarino,10 Gerardo-Giorda et al.,23 Scacchi et al.,48

and Vigmond et al.58 for a description of various
computational techniques (preconditioning, parallel
computing, etc.) used for the numerical resolution of
the bidomain equations.
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Partitioned Heart–Torso Coupling

At each time step, the linear problem (3.14) requires
the coupled solution of the transmembrane potential
Vnþ1

m and the heart–torso potential un+1. This coupling
can be solvedmonolithically, i.e., after full assembling of
the whole system matrix (see e.g. Sects. 4.6 and 4.5.1 in
Lines et al.,32 and Buist and Pullan,8 Sundnes et al.51,52).
But this results in a increased number of unknowns with
respect to the original bidomain system. Moreover, this
procedure is less modular since the bidomain and torso
equations cannot be solved independently.

This shortcoming can be overcome using a parti-
tioned iterative procedure based on domain decom-
position (see e.g. Quarteroni and Valli,46 Toselli and
Widlund53). In this study, the heart–torso coupling is
solved using the so-called Dirichlet-Neumann algo-
rithm, combined with a specific acceleration strategy.
A related approach is adopted in Buist and Pullan8 (see
also Lines et al.,32 Pullan et al.44), using an integral
formulation of the torso equation (2.11).

The main idea consists in (k-)iterating between the
heart and torso equations via the interface conditions

unþ1;kþ1T ¼ unþ1;ke ; on R;
re$unþ1;kþ1e � n ¼ rT$unþ1;kþ1T � n; on R:

(

Hence, the monolithic solution is recovered at con-
vergence. In the framework of (3.14), this amounts to
decompose the discrete test function space Wh as the
direct sum Wh ¼ Zh;0 	 LVh: The subspace Zh;0 con-
tains the functions of Wh vanishing in XH; whereas
LVh is the range of the standard extension operator
L : Vh !Wh satisfying, for all we 2 Vh,

Lwe ¼ we; in XH;
Lwe ¼ 0; on Cext:

�

The full algorithm used in this paper to solve (3.14)
reads as follows: For k ‡ 0, until convergence,


 Torso solution (Dirichlet):

unþ1;kþ1T ¼ unþ1;ke ; on R;R
XT

rTrunþ1;kþ1T � rwT ¼ 0; 8wT 2 Zh;0:


 Heart-bidomain solution (Neumann):

Am

R
XH

Cm

dt
3
2V

nþ1;kþ1
m �2Vn

mþ1
2V

n�1
m

� �
/

þ
R

XH
ri$ Vnþ1;kþ1

m þ d
unþ1;kþ1e

� �
�$/

¼Am

R
XH

Iappðtnþ1Þ�Iion eVnþ1
m ;wnþ1

� �� �
/;

R
XH

riþreð Þ$ d
unþ1;kþ1e �$weþ

R
XH

ri$Vnþ1;kþ1
m �$we

¼�
R

XT
rT$unþ1;kþ1T �$Lwe;

8>>>>>>>>><
>>>>>>>>>:

ð3:15Þ

for all / 2 Vh and we 2 Vh, with
R

XH
we ¼ 0:


 Relaxation step:

unþ1;kþ1e jR  � xk
d

unþ1;kþ1e jR þ ð1� xkÞunþ1;ke jR:

The coefficient xk is a dynamic relaxation parameter
which aims to accelerate the convergence of the itera-
tions. In this work, the following explicit expression,
based on a multidimensional Aitken formula (see e.g.
Irons and Tuck29), has been considered

xk¼
kk�kk�1
� �

� kk� bkkþ1�kk�1þ bkk� �

kk�dkkþ1�kk�1þ bkk��� ���2
; kk¼defunþ1;ke jR:

NUMERICAL RESULTS

In this section, it is shown that the full PDE/ODE
based model RM, completed by additional modeling
assumptions, allows to get meaningful 12-lead ECG
signals. Moreover, the predictive capabilities of the
model are illustrated by providing realistic numerical
ECG signals for some known pathologies, without
any other calibration of the model than those directly
related to the pathology.

Reference Simulation

Throughout this paper, the terminology ‘‘reference
simulation’’ (or RS) refers to the 12-lead numerical
ECG signals obtained by solving the reference model
RM of ‘‘Modeling’’ section with the numerical method
described in ‘‘Numerical methods’’ section and the
modeling assumption described in the following para-
graphs. The model parameters used in the RS are
summed up in Tables 1–3 below and, as initial data, we
have taken V0

m ¼ Vmin and w0 ¼ 1= Vmax � Vminð Þ2:

Anatomical Model and Computational Meshes

The torso computational geometry (see Fig. 2),
including the lung and main bone regions, was
obtained starting from the Zygote (http://www.
3dscience.com) model—a geometric model based on
actual anatomical data—using the 3-matic (http://
www.materialise.com) software to obtain computa-
tionally-correct surface meshes. The heart geometry is
simplified, based on intersecting ellipsoids, so that the
fibers orientation can be parametrized in terms of
analytical functions. We refer to Sermesant et al.49 for
the details of the geometrical definition of the heart.
Note that this simplified geometry only includes the
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ventricles. We therefore cannot simulate the P-wave of
the ECG.

The 3D computational meshes of the torso and the
heart are displayed in Figs. 2 and 3. They have been
obtained by processing the surface meshes with the
softwares Yams21 and GHS3D.22

Heart Conductivity

Cardiac muscle is made of fibers. The electrical
conductivity is higher along the fiber direction than
along the cross-fiber direction. The intracellular and
extracellular media are therefore anisotropic. This
anisotropy is included in our model defining the con-
ductivity tensors ri and re by:

ri;eðxÞ ¼
def

rt
i;eIþ ðrl

i;e � rt
i;eÞaðxÞ � aðxÞ; ð4:16Þ

where aðxÞ is a unit vector parallel to the local fiber
direction (Fig. 3) and rl

i;e and rt
i;e are respectively the

conductivity coefficients in the intra- and extra-cellular
media measured along the fibers direction and in the
transverse direction. Different conductivities values are
available in the literature (see e.g. Clements et al.,9

Malmivuo and Plonsey,35 Sundnes et al.51). The values
used in our simulations, originally reported in Potse
et al.,42 are given in Table 1. As mentioned above, the
fibers directions have been set as in Sermesant et al.49

Torso Conductivity

We assume that the torso has isotropic conductivity,
i.e. rT is diagonal rT ¼ rTI; and that the scalar het-
erogeneous conductivity rT takes three different
values:

rT ¼
rl
T lungs;

rb
T; bone;

rt
T; remaining regions,

8<
:

given in Table 2.

His Bundle and Purkinje Fibers

The His bundle quickly transmits the activation
from the atrioventricular node to the ventricles. It is
made of three main branches in the septum and gives

FIGURE 2. Computational torso mesh.

FIGURE 3. Computational heart mesh (left) and heart fiber directions (right).

TABLE 1. Heart conductivity parameters.

rl
iðS cm�1Þ rl

eðS cm�1Þ rt
iðS cm�1Þ rt

eðS cm�1Þ

3.0 9 10�3 3.0 9 10�3 3.0 9 10�4 1.2 9 10�3

TABLE 2. Torso conductivity parameters.

rl
TðS cm�1Þ rb

TðS cm�1Þ rt
TðS cm�1Þ

2.4 9 10�4 4 9 10�5 6 9 10�4

BOULAKIA et al.



rise to the thin Purkinje fibers in the ventricular mus-
cle. The activation travels from the His bundle to the
ventricular muscle in about 40 ms. Interesting attempts
at modeling the His bundle and the Purkinje fibers
have been presented in the literature (see e.g. Vigmond
and Clements57). But a physiological model of this fast
conduction network coupled to a 3D model of the
myocardium raises many modeling and computational
difficulties: the fiber network has to be manually
defined whereas it cannot be non-invasively obtained
from classical imaging techniques; the results are
strongly dependent on the density of fibers which is a
quantity difficult to determine; the time and the space
scales are quite different in the fast conduction net-
work and in the rest of the tissue which can be chal-
lenging from the computational standpoint.

To circumvent these issues, we propose to roughly
model the Purkinje system by initializing the activation
with a (time-dependent) external volume current, acting
on a thin subendocardial layer (both left and right
parts). The propagation speed of this initial activation is
a parameter of the model (see the details in Appendix).
Although this approach involves a strong simplification
of the reality, it allows a simple and quite accurate
control of the activation initialization, which is a fun-
damental aspect in the simulation of correct ECGs.

Cell Heterogeneity

Action potential duration (APD) heterogeneity
may be found at different myocardium locations, for

instance: between base and apex, between septal and
posterior sides, and transmurally (see e.g. Franz
et al.20). Although not yet fully explained (see e.g.
Conrath and Opthof,13 for a review), experimental
evidence2,20,27,59 suggests that transmural APD heter-
ogeneity is likely to be the most important factor in the
genesis of the normal ECG T-wave shape and polarity.
A number of simulation studies5,14,30,40,41 confirm also
this (still debated) postulate. Interestingly, the numer-
ical investigations recently reported in Colli Franzone
et al.11 (using a highly idealized geometry) indicate that
the polarity of the T-wave (for unipolar ECG leads)
may be mainly driven by the cardiac tissue anisotropy.

In the present work, cell heterogeneity is only
considered as transmural variation of APD in the left
ventricle. Hence, we assume that epicardial cells have
the shortest APD and that endocardial cells have an
intermediate APD between mid-myocardial cells
(M-cells) and epicardial cells (see e.g. Yan and
Antzelevitch59). From the analysis reported in Sect.
3.1 in Mitchell and Schaeffer,36 the leading order of
the maximum APD provided by the Mitchell-Scha-
effer ionic model (2.6) is proportional to the param-
eter sclose. Thus, the APD heterogeneity is modeled
with a parameter sclose varying across the left ven-
tricle transmural direction: sendoclose near the endocar-
dium, smcell

close in the mid-myocardium (M-cells) and
sepiclose near the epicardium (see Fig. 4). For simplicity,
we take a constant value of sRV

close in the whole right
ventricle. The values of the parameters are given in
Table 3.

FIGURE 4. Transmural APD heterogeneity: comparison of the simulated transmembrane potentials for endocardial cells (green),
M-cells (red) and epicardial cells (blue). Snapshots of the transmembrane potential at times t 5 60 and 300 ms.

TABLE 3. Cell membrane parameters.

Am (cm�1) Cm (mF) sin sout sopen sRV
close sendo

close sclose
mcell sclose

epi Vgate Vmin Vmax

200 10�3 4.5 90 100 120 130 140 90 �67 �80 20
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Results

The ECGs are computed according to the standard
12-lead ECG definition (see Malmivuo and Plonsey,35

for instance):

I¼defuTðLÞ� uTðRÞ; II¼defuTðFÞ� uTðRÞ;

III¼defuTðFÞ� uTðLÞ;

aVR¼def 3
2

uTðRÞ� uWð Þ; aVL¼def 3
2

uTðLÞ� uWð Þ; ð4:17Þ

aVF¼def 3
2

uTðFÞ� uWð Þ;

Vi¼defuTðViÞ� uW i¼ 1; . . . ;6;

where uW ¼
def ðuTðLÞ þ uTðRÞ þ uTðFÞÞ=3 and the body

surface electrode locations L, R, F, fVigi¼1;...;6 are
indicated in Fig. 5.

The simulated ECG obtained from RS is reported in
Fig. 6. Some snapshots of the corresponding body
surface potential are depicted in Fig. 7. Compared to a
physiological ECG, the computed ECGhas someminor
flaws. First, the T-wave amplitude is slightly lower than
expected. Second, the electrical heart axis (i.e. the mean
frontal plane direction of the depolarization waveFIGURE 5. Torso domain: ECG leads locations.

FIGURE 6. Reference simulation: 12-lead ECG signals obtained by a strong coupling with the torso, including anisotropy and
APD heterogeneity. As usual, the units in the x- and y-axis are ms and mV, respectively.
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traveling through the ventricles during ventricular
activation) is about �40� whereas it should be between
0� and 90� (see e.g. Aehlert1). This is probably due to a
too horizontal position of the heart in the thoracic

cavity. Third, in the precordial leads, the R-wave pre-
sents abnormal (low) amplitudes in V1 and V2 and the
QRS complex shows transition from negative to posi-
tive polarity in V4 whereas this could be expected in V3.

FIGURE 7. Reference simulation: some snapshots of the body surface potentials at times t 5 10, 47, 70, 114, 239 and 265 ms
(from left to right and top to bottom).
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Despite that, the main features of a physiological
ECG can be observed. For example, the QRS-complex
has a correct orientation and a realistic amplitude in
each of the 12 leads. In particular, it is negative in leadV1
and becomes positive in lead V6. Moreover, its duration
is between 80 and 120 ms, which is the case of a healthy
subject. The orientation and the duration of the T-wave
are also satisfactory. To the best of our knowledge, this
12-lead ECG is the most realistic ever published from a
fully based PDE/ODE 3D computational model.

Pathological Simulations

In this paragraph, we modify the reference simula-
tion that provided the ‘‘healthy’’ ECG (Fig. 6) in order
to simulate a right or a left bundle branch block
(RBBB or LBBB). The purpose is to test whether the
ECG produced by our model possesses the main
characteristics that allow a medical doctor to detect
these pathologies.

In the RS, the right and the left ventricle are acti-
vated simultaneously. Now, in order to simulate a
LBBB (resp. a RBBB) the initial activation is blocked
in the left (resp. right) ventricle.

The results are reported in Fig. 8 (RBBB) and 9
(LBBB). As in the healthy case, an expert would
detect some flaws in these ECGs. For example, he
would expect a larger QRS and a lead V1 without
Q-wave. Nevertheless, he would also recognize the
main features that indicate the bundle branch blocks
(see e.g. Malmivuo and Plonsey35). First, the QRS-
complex exceeds 120 ms in both cases. Second, it can
be seen in Fig. 8 that the duration between the
beginning of the QRS complex and its last positive
wave in V1 exceeds 40 ms which is a sign of RBBB.
Third, it can be seen in Fig. 9 that the duration
between the beginning of the QRS complex and its
last positive wave in V6 exceeds 40 ms which is a sign
of LBBB. It is noticeable that these results have been
obtained without any recalibration of the RS, besides
the above mentioned (natural) modifications needed
to model the disease.

IMPACT OF SOME MODELING ASSUMPTIONS

In this section, the impact of some alternative
modeling assumptions on the simulated ECG is

FIGURE 8. Simulated 12-lead ECG signals for a RBBB.
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investigated. This allows to assess to what extent the
modeling assumptions involved in the RS are necessary
to obtain a meaningful ECG.

Heart–Torso Uncoupling

A common approach to reduce the computational
complexity of the RM consists in uncoupling the
computation of (Vm, ue) and uT. This can be achieved
by neglecting, in (2.10), the electrical torso feedback on
the cardiac region. That is, by replacing the coupling
condition (2.10)2 by

rerue � n ¼ 0; on R; ð5:18Þ

which amounts to work with an isolated heart domain
(see e.g. Clements et al.,9 Potse et al.42).

As a result, the intracardiac quantities (Vm, ue)
can be obtained, independently of uT, by solving
(2.7) with initial condition (2.8) and insulating con-
ditions

ri$Vm � nþ ri$ue � n ¼ 0; on R;
re$ue � n ¼ 0; on R:

�
ð5:19Þ

Thereafter, the torso potential uT is recovered by
solving (2.11) with

uT ¼ ue; on R;
rT$uT � nT ¼ 0; on Cext;

�
: ð5:20Þ

as boundary conditions. In other words, the uncoupled
heart potential ue is transferred, from XH to XT,
through the interface R (see Barr et al.,3 Shahidi
et al.50).

Remark 5.1 Rather than interface based, as (5.20),
most of the uncoupled approaches reported in the
literature are volume based (see Sect. 4.2.4 in Lines
et al.,32 for a review). Thus, the torso potentials are
generated by assuming a (multi-)dipole representation
of the cardiac source, typically based on the
transmembrane potential gradient rVm (see e.g.
Gulrajani,26 Pullan et al.44).

From the numerical point of view, the heart–torso
uncoupling amounts to replace Step 4, in ‘‘Space and
Time Discretization’’ section, by:


 Solving for ðVnþ1
m ; unþ1e Þ 2 Vh � Vh; withR

XH
unþ1e ¼ 0:

FIGURE 9. Simulated 12-lead ECG signals for a LBBB.
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Am

R
XH

Cm

dt
3
2V

nþ1
m � 2Vn

m þ 1
2V

n�1
m

� �
/

þ
R

XH
ri$ Vnþ1

m þ unþ1
� �

� $/

¼ Am

R
XH

Iappðtnþ1Þ � Iion eVnþ1
m ;wnþ1

� �� �
/;R

XH
ri þ reð Þ$unþ1e � $we þ

R
XH

ri$Vnþ1
m � $we ¼ 0;

8>>>><
>>>>:

for all ð/;weÞ 2 Vh � Vh; with
R

XH
we ¼ 0:

Then, once funþ1e g0�n�N�1 are available, the torso
potential is obtained by solving, for unþ1T 2 Zh;

unþ1T ¼ unþ1e ; on R;Z
XT

rTrunþ1T � rwT ¼ 0; 8wT 2 Zh;0:
ð5:21Þ

The remainder of this section discusses the impact of
the uncoupled approach on ECG accuracy and com-
putational cost.

Numerical Results

Figure 10 presents the ECGs obtained with the fully
coupled (i.e. the RS) and the uncoupled approaches in
a healthy condition. For the sake of conciseness, we
have only reported the I, aVR, V1 and V4 leads of the
ECG. Figure 11 reports the comparison in the case of
a pathological RBBB situation.

In both cases, the amplitude of the waves of the
uncoupled formulation is much larger than in the fully
coupled formulation. In the healthy case (Fig. 10), it
can nevertheless be noted that the shape of the ECG is
almost unaffected. These results are consistent with the
experimental findings reported in Green et al.25: no
significant changes in epicardial activation but

substantial increasing in epicardial potentials magni-
tude were observed when the heart surface was exposed
to insulating air. Thus, considering an uncoupled for-
mulation can be reasonable to get a qualitatively correct
ECGs, in the sense that some important features of the
ECGs—for example, the QRS or the QT intervals—are
the same as in the fully coupled case. This observation is
the basis of the numerical study reported in ‘‘Numerical
Investigations with Weak Heart–Torso Coupling’’ sec-
tion using heart–torso uncoupling. Nevertheless,
Fig. 11 shows that both amplitude and shape can differ
in some cases. The uncoupling assumption has therefore
to be considered with caution. Similar conclusions are
given in Page 315 in Pullan et al.44 (see also Sect. 4.3 in
Lines et al.32), by comparing the surface potentials, on a
2D torso slice, obtained with a multi-dipole represen-
tation of the cardiac source (see Remark 5.1).

Torso Transfer Matrix Computation

Under a heart–torso uncoupling assumption, the
torso potential uT is computed by solving the gen-
eralized Laplace equation (2.11) with boundary con-
ditions (5.20). Therefore, uT depends linearly on the
heart extracellular potential at the heart–torso inter-
face uejR: At the discrete level, we will see that this leads
to a matrix-vector product representation of the ECG
computation in terms of the discrete extracellular
potential at the heart–torso interface R.

To this aim, we introduce some additional notation
and assume that the heart and torso finite element
discretizations match at the interface. For the sake of
simplicity, the degrees of freedom (DOF) of torso

FIGURE 10. Comparison of the simulated healthy ECGs obtained using heart–torso uncoupling (top) and fully heart–torso
coupling (bottom).
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potential are partitioned as xT ¼def ½xT;I; xT;R� 2 RnIþnR ;
where xT;R denotes the heart–torso interface DOF and
xT;I the remaining DOF. We denote by xejR 2 RnR the
extracellular potential DOF at the heart–torso inter-
face R. Finally, we assume that the 9 potential values
generating the ECG (see ‘‘Results’’ section), say
xECG 2 R9; are obtained from the discrete torso
potential xT in terms of an interpolation operator
P 2 R9�nI ; so that

xECG ¼ PxT;I; ð5:22Þ

for instance, P can be a nodal value extraction of xT;I:
On the other hand, from (5.21), the discrete torso
potential xT is solution to the following finite element
linear system:

AII AIR

0 IRR

	 

xT;I
xT;R

	 

¼ 0

xejR

	 

: ð5:23Þ

Hence, by Gaussian elimination, we have that xT;I ¼
�A�1II AIRxejR; and by inserting this expression in (5.22),
we obtain

xECG ¼ �PA�1II AIR|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
T

xejR:

Therefore, the ECG can be computed from the discrete
extracellular potential at the heart torso interface, xejR;
by a simple matrix-vector operation xECG ¼ TxejR;
with T ¼def � PA�1II AIR:

There are different solutions to compute T:The naive
idea consisting of computing the matrixA�1II is of course
ruled out. A reasonable and natural option is to com-
pute matrix T by column (see Shahidi et al.50), i.e. by

evaluatingTei for i = 1, …, nR, where ei denotes the i-th
canonical vector of RnR : But each of these evaluations
involve the solution of system (5.23) with xejR ¼ ei; and
therefore the overall computational cost is proportional
to nR, which can be rather expensive (remember that nR

is the number of nodes on the heart–torso interface, and
is therefore of the order of several thousands). In con-
trast, a computation by row is much more efficient since
it is only needed to evaluate TTei for i = 1, …, 9, where
ei stands for the i-th canonical vector of R9: From the
symmetry of the finite element matrix,

TT ¼ �AT
IRA

�T
II PT ¼ �ARIA

�1
II P

T:

Therefore, the matrix-vector product evaluation

TTei ¼ �ARI A
�1
II P

Tei|fflfflfflfflffl{zfflfflfflfflffl}
xT;I

; ð5:24Þ

can be performed in two steps as follows. First, solve
for ½xT;I; xT;R� the discrete source problem (depending
on the linear operator P), with homogeneous Dirichlet
boundary condition on R:

AII AIR

0 IRR

	 

xT;I
xT;R

	 

Ptei
0

	 

; ð5:25Þ

Second, from (5.24), evaluate the interface residual

TTei ¼ �ARIxT;I ¼ � ARI ARR½ � xT;I
xT;R

	 

:

Note that, TTei is nothing but the discrete current flux
through the heart–torso interface R, associated to the
homogeneous Dirichlet condition in (5.25).

FIGURE 11. Comparison of the simulated RBBB ECGs obtained using heart–torso uncoupling (top) and fully heart–torso cou-
pling (bottom).
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In this paper, all the numerical ECGs based on
the uncoupling conditions (5.19)–(5.20) have been
obtained using the matrix T presented in this para-
graph (and this matrix has been computed by row).

Remark 5.2 If the operator P is a simple extraction
of nodal values from the torso potential DOF, xT; each
evaluation TTei; for i = 1, …, 9, can be (formally)
interpreted at the continuous level as a current flux
evaluation at R of the problem

divðrT$vÞ ¼ dxi ; in XT;
v ¼ 0; on R;
rT$v � nT ¼ 0; on Cext;

8<
:

with dxi the Dirac’s delta function at the i-th point, xi;
of torso potential recording on Cext.

Remark 5.3 Note that the transfer matrix T can be
computed ‘‘off-line’’, since it depends neither on time
nor on solution in the heart. Nevertheless, this matrix
has to be recomputed when the torso conductivities are
modified or when dealing with dynamic torso meshes.

Table 4 reports the elapsed CPU time needed to
simulate an ECG with three different approaches. As
expected, the uncoupling assumption significantly
reduces the computational cost of the ECG simulation,
especially if the transfer matrix method is used to
recover the torso potentials. Let us emphasize that, the
last two columns of Table 4 refer to the same problem
(uncoupled formulation) solved with two different
algorithms, whereas the problem corresponding to the
first column (fully coupled formulation) is different
and a priori more accurate.

Study of the Monodomain Model

In the previous section we have investigated a sim-
plifying modeling assumption that allows a uncoupled
computation of the heart and torso potentials (Vm, ue)
and uT.We nowdiscuss another simplification known as
monodomain approximation (see e.g. Clements et al.,9

Colli Franzone et al.12). Combined with a heart–torso
uncoupling assumption, this approach leads to a fully
decoupled computation of Vm, ue and uT.

The next subsection investigates the implications, on
ECG modeling, of the general monodomain derivation
proposed in Clements et al.9 and Colli Franzone

et al.,12 without any assumptions on the anisotropy
ratio of the intra- and extracellular conductivities. The
impact of this approximation on the simulated ECG is
then illustrated in ‘‘Numerical Results with Heart–
Torso Uncoupling’’ section, using the heart–torso
uncoupling simplification.

The Monodomain Approximation

We assume that the intra- and extracellular local

conductivities rl;t
i and rl;t

e are homogeneous (constant

in space). Let j ¼def ji þ je be the total current, flowing

into XH, and r ¼def ri þ re be the bulk conductivity
tensor of the medium.

From (2.3) and (2.4), j ¼ �ri$ui � re$ue ¼
�ri$Vm � r$ue; or, equivalently,

$ue ¼ �r�1ri$Vm � r�1j: ð5:26Þ

By inserting this expression in (2.7)1 and (2.9), we
obtain

Am Cm
@Vm

@t þ IionðVm;wÞ
� �

� div ri I� r�1ri

� �
$Vm

� �
¼ �div rir

�1j
� �

þ AmIapp; in XH;
ri I� r�1ri

� �
$Vm � n ¼ rir

�1j � n; on R:

8<
:

ð5:27Þ

On the other hand, ri I� r�1ri

� �
¼ rir

�1ðr� riÞ ¼
rir
�1re: Therefore, by defining

ra ¼
def

rir
�1re; ð5:28Þ

the expression (5.27) reduces to

Am Cm
@Vm

@t þ IionðVm;wÞ
� �

� div ra$Vmð Þ
¼ �div rir

�1j
� �

þ AmIapp; in XH;
ra$Vm � n ¼ rir

�1j � n; on R:

8<
: ð5:29Þ

Following Clements et al.9 and Colli Franzone et al.,12

we deduce from (4.16)

rir
�1 ¼ ltIþ ðll � ltÞa� a; ð5:30Þ

with

ll ¼
def ri

l

ri
l þ re

l

; lt ¼
def ri

t

ri
t þ re

t

;

By setting e ¼def jlt � llj; we deduce from (5.30)

rir
�1 ¼ ltIþOðeÞ: ð5:31Þ

As noticed in Clements et al.,9 e is a parameter that
measures the gap between the anisotropy ratios of the
intra- and extracellular media. In general 0 £ e < 1,
and for equal anisotropy ratios e = 0 so that
rir
�1 ¼ ltI:
Assuming e � 1, the expansion (5.31) can be

inserted into (5.29) by keeping the terms up to the zero

TABLE 4. Comparison of the elapsed CPU time (dimen-
sionless) for the computation of the ECG.

Full coupling

Uncoupling

Laplace equation

Uncoupling

transfer matrix

60 4 1
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order. Thus, since lt is assumed to be constant, and
using (2.1) and (2.9), up to the zero order in e, the
so-called monodomain approximation is obtained:

Am Cm
@Vm

@t þ IionðVm;wÞ
� �

� div ra$Vmð Þ
¼ AmIapp; in XH;

ra$Vm � n ¼ �lTre$ue � n; on R:

8<
:

ð5:32Þ

Heart–torso full coupling. Under the full coupling con-
ditions (2.10), Vm and ue cannot be determined indepen-
dently from each other. Note that, in (5.32) the coupling
between Vm and ue is fully concentrated on R, whereas in
RM this coupling is also distributed inXH, through (2.7)1.
Therefore, as soon as the heart and the torso are strongly
coupled, the monodomain approximation does not sub-
stantially reduce the computational complexity with
respect to RM. Owing to this observation, we will not
pursue the investigations on this approach.

Heart–torso uncoupling. Within the framework of
‘‘Heart–Torso Uncoupling’’ section, the insulating
condition (5.18) combined with (5.32) yields

Am Cm
@Vm

@t þ IionðVm;wÞ
� �

� div ra$Vmð Þ
¼ AmIapp; in XH;

ra$Vm � n ¼ 0; on R;

8<
:

ð5:33Þ

which, along with (2.5), allows to compute Vm inde-
pendently of ue. The extra-cellular potential can then
be recovered, a posteriori, by solving

�div ri þ reð Þ$ueð Þ ¼ div ri$Vmð Þ; in XH;
ri þ reð Þ$ue � n ¼ �ri$Vm � n; on R:

�

At last, the heart potentials are transferred to the torso
by solving (2.11) with (5.20), as in ‘‘Heart–Torso
Uncoupling’’ section.

Therefore, the monodomain approximation (5.32)
combined with a heart–torso uncoupling assumption
leads to a fully decoupled computation of Vm, ue and
uT. The three systems of equations which have to be
solved successively read:

1. Monodomain problem, decoupled Vm:

Am Cm
@Vm

@t þ IionðVm;wÞ
� �
�div ra$Vmð Þ

¼ AmIapp; in XH;
@w
@t þ gðVm;wÞ ¼ 0; in XH;
ra$Vm � n ¼ 0; on R:

8>>>><
>>>>:

ð5:34Þ

2. Heart extracellular potential ue:

div ðriþreÞ$ueð Þ
¼�divðri$VmÞ; in XH;
ðriþreÞ$ue � n¼�ri$Vm � n; on R:

8<
: ð5:35Þ

3. Torso potential uT:

div rT$uTð Þ ¼ 0; in XT;
uT ¼ ue; on R;

rT$uT � nT ¼ 0; on Cext:

8<
: ð5:36Þ

To sum up the discussion of this subsection on can
say that two levels of simplification can be considered
with respect to RM: first, replacing the bidomain
equations by the monodomain equations; second,
replacing the full heart–torso coupling by an uncou-
pled formulation. The first simplification significantly
reduces the computational effort only if the second one
is also assumed.

Numerical Results with Heart–Torso Uncoupling

Figure 12 shows the ECG signals obtained with the
bidomain model (bottom) and the monodomain
approximation (top) in a healthy case, using the heart–
torso uncoupling simplification. The simulated ECGs
for a RBBB pathological condition are given in
Fig. 13. These figures clearly show that the most
important clinical characteristics (e.g. QRS or QT
durations) are essentially the same in both approaches.

The first lead, in a healthy case, of both approaches
are presented together in Fig. 14, for better compari-
son. The relative difference on the first lead is only 4%
in l2-norm. Thus, as far as the ECG is concerned,
bidomain equations can be safely replaced by the
monodomain approximation.

These observations are consistent with the conclu-
sions of other studies based on isolated whole heart
models.9,42 For instance, the numerical results reported
in Potse et al.42 show that the propagation of the acti-
vation wave is only 2% faster in the bidomain model
and that the electrograms (point-wise values of the
extra-cellular potential) are almost indistinguishable.

Isotropy

The impact of the conductivity anisotropy on the
ECG signals is now investigated. To this aim, the
numerical simulations of ‘‘Reference Simulation’’ sec-
tion are reconsidered with isotropic conductivities, by
setting

rt
e¼rl

e¼3:0�10�3Scm�1; rt
i ¼rl

i¼3:0�10�3Scm�1:

Figure 15 (top) shows the corresponding ECG signals.
The QRS and T waves have the same polarity than in
the anisotropic case, Fig. 15 (bottom). However, we
can clearly observe that the QRS-complex has a
smaller duration and that the S-wave amplitude, in
leads I and V4, is larger. The impact of anisotropy is
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much more striking when dealing with pathological
activations. In Fig. 16, for instance, the simulated
ECG signals for a RBBB pathology have been
reported with anisotropic and isotropic conductivities.
Notice that the electrical signal is significantly dis-
torted. In particular, the amplitude of the QRS com-
plex is larger in the isotropic case (this observation also
holds in the healthy case).

These numerical simulations show that anisotropy
has a major impact on the accuracy of ECG signals.

Meaningful ECG simulations have therefore to incor-
porate this modeling feature (see also Colli Franzone
et al.11).

Cell Homogeneity

As mentioned in ‘‘Cell Heterogeneity’’ section, an
heterogeneous coefficient sclose has been considered in
RS to incorporate an APD gradient across the left
ventricle transmural direction. In this paragraph, the

FIGURE 12. Simulated normal ECG with heart–torso uncoupling: monodomain (top) and bidomain (bottom) models.

FIGURE 13. Simulated ECG for a RBBB pathology with heart–torso uncoupling: monodomain (top) and bidomain (bottom)
models.
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myocardium is assumed to have homogeneous cells.
The ECG signals corresponding to a constant APD in
the whole heart, obtained with sclose = 140 ms, are
reported in Fig. 17.

Note that now, in the bipolar lead (I), the T-wave
has an opposite polarity with respect to the RS and to
what is usually observed in normal ECGs. Indeed,
without transmural APD heterogeneity, the repolari-
zation and the depolarization waves travel in the same
direction, which leads to the discordant polarity,
between the QRS and the T waves, observed in lead I.
On the contrary, the unipolar leads (aVR, V1 and V4)

present a similar polarity, irrespectively of the ADP
heterogeneity (see also Colli Franzone et al.11).

As a result, as also noticed in Boulakia et al.,5 Keller
et al.,30 and Potse et al.,40,41 transmural APD hetero-
geneity is a major ingredient in the simulation of a
complete 12-lead ECG with physiological T-wave
polarities.

Capacitive and Resistive Effect of the Pericardium

The coupling conditions (2.10) are formally
obtained in Krassowska and Neu31 using an homoge-
nization procedure. In that reference, a perfect elec-
trical coupling is assumed between the heart and the
surrounding tissues.

It might be interesting to consider more general
coupling conditions. For instance, by assuming that
the pericardium (the double-walled sac containing the
heart) might induce a resistor–capacitor effect. This
can be a way to model pathological conditions—
e.g. pericarditis, when the pericardium becomes
inflamed—or to take into account the fact that, even in
a healthy situation, the heart–torso coupling can be
more complex. Thus, we propose to generalize (2.10),
by introducing the following resistor–capacitor (R–C)
coupling conditions:

RprT$uT � n ¼ RpCp
@ðue�uTÞ

@t þ ðue � uTÞ; on R;
re$ue � n ¼ rT$uT � n; on R;

�

ð5:37Þ

where Cp and Rp stand for the capacitance and resis-
tance of the pericardium, respectively. Note that, the
classical relations (2.10) can be recovered from (5.37)

FIGURE 14. First ECG lead: bidomain and monodomain
models with heart–torso uncoupling.

FIGURE 15. ECG signals: isotropic conductivities (top), anisotropic conductivities (bottom).
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by setting Rp = 0. To the best of our knowledge, the
resistor–capacitor behavior (5.37) of the pericardium is
not documented in the literature, so we propose to
study its effect on ECGs through numerical simula-
tions.

Numerical tests showed that for Rp small (Rp <

103 X cm2 approximately) or Cp large (Cp > 1
mF cm�2 approximately) the simulated ECG is very
close to the RS. Figure 18, for instance, presents the
ECG signals obtained with Rp = 102 X cm2 and
Cp = 0 mF cm2.

In order to illustrate the resistor effect, we have
reported in Fig. 19 the ECG obtained with Cp = 0 mF
cm�2 and Rp = 104 X cm2. We clearly observe that the
amplitude of the signals is smaller than in the RS.
More generally, this amplitude decreases when Rp

increases, as expected.
We now focus on the capacitor effect by taking

Rp very large. Figure 20 presents the ECG sig-
nals obtained with Rp = 1020 X cm2 and Cp =

10�2 mF cm�2. We observe that the capacitive
term induces a relaxation effect and distorts the signal.

FIGURE 16. Isotropic (top) and anisotropic (bottom) conductivities in a pathological case (RBBB).

FIGURE 17. ECG signals: homogeneous action potential duration (top), heterogeneous action potential duration (bottom).
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In particular, the T-wave is inverted in all the ECG
leads and the S-wave duration is larger than for the
RS. At last, Fig. 21 shows that for very small values of
Cp the amplitude of the ECG is also very small. This
can be formally explained by the fact that, in this
case, condition (5.37)1 approximately becomes
rTruT � n ¼ 0 on R: no heart information is trans-
ferred to the torso, leading to very low ECG signals.

NUMERICAL INVESTIGATIONS WITH WEAK

HEART–TORSO COUPLING

In this section, we investigate the ECG sensitivity
to the time and space discretizations and to the heart
and torso model parameters. To carry out these
studies at a reasonable computational cost, we con-
sider the heart–torso uncoupling. Although we have
noticed (in ‘‘Heart–Torso Uncoupling’’ section) that
uncoupling may affect the ECG accuracy in some
cases, we can expect that the conclusions of the
sensitivity analysis remain still valid under this sim-
plification.

Time and Space Convergence

In this section, we are not interested in the conver-
gence of the whole solution of the RM with respect
to the space and time discretization parameters, but
rather in the convergence of the ECG which is here
considered as the quantity of interest.

Time Convergence

In Fig. 22, we present the first ECG lead (lead I)
obtained for three different time-step sizes dt = 0.25,
0.5 and 2 ms. The l2-norm of the relative difference
with the result obtained with dt = 0.25 ms is 10%
when dt = 2 ms and 2.0% when dt = 0.5 ms.

Space Convergence

Three different levels of refinements are considered
for the heart and the torso meshes, as shown in
Table 5. The finite element meshes used in the RS are
the R2. In Fig. 23, we report the first lead of the ECGs
obtained for these simulations.

Although the whole solution might not be fully
converged within the heart, we can observe that the

FIGURE 18. Simulated 12-lead ECG signals: R–C heart–torso coupling conditions with Rp ¼ 102 X cm2;Cp ¼ 0 mF cm�2.

Mathematical Modeling of Electrocardiograms



quantity of interest—namely the ECG—is almost
unaffected by the last refinement. Therefore, in a goal-
oriented refinement framework, the solution may
indeed be considered as converged.

Sensitivity to Model Parameters

In this section, we study the sensitivity of ECG to
some model parameters. This is fundamental step prior
to addressing its estimation (see e.g. Boulakia et al.6)
using data assimilation techniques.

Suppose that a1, a2, …, ap are parameters the ECG
depends upon, i.e.

ECG ¼ ECG a1; a2; . . . ; ap
� �

:

The ECG sensitivity to parameter ai can then be
approximated as

@aiECG a1;a2;...;ap
� �

�ECGða1;a2;...;ð1þeÞai;...;apÞ�ECGða1;a2;...;apÞ
eai

;

where e is a small parameter, in our case 10�6 £
e £ 10�4 gives a good approximation. Instead of
@aiECG a1; a2; . . . ; ap

� �
we consider the normalized

value ai@aiECG a1; a2; . . . ; ap
� �

, which allows to com-
pare the sensitivity irrespectively of the parameter
scales. In the next paragraphs, we provide time evo-
lution of this scaled derivative, evaluated around the
parameters used in the RS. Once more, for the sake of
conciseness, we focus on the first ECG lead.

Ionic Model Parameters

In this paragraph, we investigate the sensitivity of
the ECG to the Mitchell-Schaeffer parameters. In
Fig. 24, we have reported the normalized derivatives
with respect to sin, sout, sopen or sclose. The high ECG
sensitivity to sin is clearly visible, particularly during
the QRS-complex. The sensitivity to sout is moderate
both during the depolarization and depolarization
phases. As expected, the sensitivity to sclose is only
relevant during repolarization. Interestingly, the sen-
sitivity to sopen is relatively small. Therefore, this

FIGURE 19. Simulated 12-lead ECG signals: R–C heart–torso coupling conditions with Rp = 104 X cm2;Cp = 0 mF cm�2.
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parameter may be removed (i.e. keep fixed) within an
inverse estimation procedure.

Bidomain Model Parameters

We first focus on the ECG sensitivity to the local
myocardium conductivities: re

t, re
l , ri

t and ri
l. The

corresponding normalized derivatives are given in
Fig. 25. During depolarization (QRS-complex), the
ECG is mainly sensitive to transverse conductivity
(re

t, ri
t). This can be due to the dominating trans-

mural propagation of the depolarization wave in the
left ventricle (see Fig. 4, left). During repolarization
(T-wave), on the contrary, the ECG shows approxi-
mately the same sensitivity to all the local conduc-
tivities.

We now pursue our sensitivity analysis, by consid-
ering the parameters Am and Cm. The corresponding
normalized derivatives are given in Fig. 26. We
observe a strong sensitivity to both parameters during
depolarization. Whereas, during the repolarization
phase, the sensitivity is reduced.

At last, we investigate the sensitivity of the ECG to
the initial activation in the heart (see Appendix). More
precisely, we focus on the sensitivity to the activation
angular velocity p

2tact
. The corresponding normalized

derivative is reported Fig. 27. As expected, the ECG is
strongly sensitive to this parameter, particularly during
the depolarization phase.

Torso Parameters

We finally consider the sensitivity of the ECG to the
torso conductivities rT

l , rT
b and rT

t . Note that, in a
heart–torso uncoupling framework, the corresponding
three normalized derivatives are linked by a linear
relation. Indeed, from (2.11) and (5.20), we have that,
for all k 2 R; uT solves

div krT$uTð Þ ¼ 0; in XT;
uT ¼ ue; on R;
krT$uT � nT ¼ 0; on Cext:

8<
:

In other words,

uT krl
T; krb

T; krt
T

� �
¼ uT rl

T; r
b
T; r

t
T

� �
: ð6:38Þ

FIGURE 20. Simulated 12-lead ECG signals: R–C heart–torso coupling conditions with Rp ¼ 1020 X cm2; Cp ¼ 10�2mF cm�2.
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Differentiating this relation with respect to k (and
evaluating the resulting expression at k = 1) yields

rl
T@rl

T
uT þ rb

T@rb
T
uT þ rt

T@rt
T
uT ¼ 0:

Thus, from (4.17), we obtain a similar relation for the
normalized ECG derivatives:

rl
T@rl

T
ECGþ rb

T@rb
T
ECGþ rt

T@rt
T
ECG ¼ 0:

Figure 28 presents the normalized derivatives of the
ECG with respect to the tissue, lung and bone con-
ductivities. This figure clearly shows that the ECG
sensitivity to the bone parameter rT

b is negligible
compared to its sensitivity to the tissue and lung
parameters. Thus, if we have in mind to limit the
number of parameters to be estimated, rT

b can safely be
fixed to the value used in the RS.

FIGURE 21. Simulated 12-lead ECG signals: R–C heart–torso coupling conditions with Rp 5 1020 X cm2, Cp 5 1024 mF cm22.

FIGURE 22. Comparison of three simulations of ECG (lead I)
with three different time steps: 2, 0.5 and 0.25 ms.

TABLE 5. There different levels of refinement for the
computational heart and torso meshes (rounded off

values).

Meshes Heart nodes Torso nodes

Total number

of tetrahedra

R1 13,000 56,000 370,000

R2 80,000 120,000 1,080,000

R3 236,000 232,000 2,524,000
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CONCLUSION

A fully PDE/ODE based mathematical model for
the numerical simulation of ECGs has been described.
The electrical activity of the heart is based on the
coupling of the bidomain equations with the
Mitchell-Schaeffer phenomenological ionic model,
including anisotropic conductivities and transmural
APD heterogeneity. This system of equations has been
coupled to a generalized Laplace equation in the torso,

with inhomogeneous conductivity (bone, lungs and
remaining tissue). A detailed description of the different
algorithms used for the numerical solution of the
resulting ECG model has been also provided.

Our approach has several limitations: we did not
consider the atria, which prevents us from computing
the P wave of the ECG; the cell model being phenom-
enological, it cannot handle complex ionic interactions;
the effect of the blood flow on the ECG was neglected;
the geometry of the ventricles were simplified.

FIGURE 23. Comparison of three simulations of ECG (lead I),
using three different levels of mesh refinement (see Table 5).

FIGURE 24. Normalized ECG sensitivity to sin, sout, sopen and
sclose.

FIGURE 25. Normalized ECG sensitivity to the local myo-
cardium conductivities: re

t , re
l , ri

t and rl
i.

FIGURE 26. Normalized ECG sensitivity to Am and Cm.
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Despite the above mentioned limitations, we were
able to compute a satisfactory healthy 12-lead ECG,
with a limited number a parameters. To the best of our
knowledge, this constitutes a breakthrough in the
modeling of ECGs with partial differential equations.
Moreover, for a pathological situation corresponding
to a bundle branch block, our simulations have pro-
vided an ECG which satisfies the typical criteria used
by medical doctors to detect this pathology. This

shows, in particular, that our numerical model have
some predictive features.

In a second part, we have studied the impact of
some modeling assumptions on the ECGs. The main
conclusions of this investigation are the following:

1. As far as the general shape of the ECGs is con-
cerned, heart–torso uncoupling can be consid-
ered. The level of accuracy obtained with
uncoupling is probably sufficient in several
applications, which may explain why this sim-
plification is so widespread in the literature.
Nevertheless, our numerical results have clearly
pointed out that the amplitudes of the ECG
signals obtained via uncoupling and full cou-
pling can significantly differ. We therefore rec-
ommend to carefully check in each specific
situations whether the uncoupling approxima-
tion is acceptable or not.

2. In agreement with other studies, we noticed
that cell heterogeneity and fiber anisotropy
have an important impact on the ECG and,
therefore, cannot be neglected.

3. The bidomain equations can apparently be
safely replaced by the monodomain approxi-
mation (5.32). Nevertheless, even with this
simplification, the transmembrane potential
Vm and the extracellular potential ue still have
to be solved simultaneously when the heart and
the torso are fully coupled. Therefore, to be
really attractive, the monodomain simplifica-
tion (5.32) has to come with a heart-torso
uncoupling approximation, which (as men-
tioned above) can affect the ECG. An alter-
native can be to neglect the boundary coupling
in (5.32) while keeping ue and uT fully coupled
(see e.g. Potse et al.43 In a pure propagation
framework, i.e. without extracellular pacing,
numerical experiments suggest that this
approach can provide accurate ECG signals.

4. We have proposed a new heart–torso coupling
condition which takes into account possible
capacitive and resistive effects of the pericar-
dium. We did not find in the literature any evi-
dence of these effects and our results show that it
does not seem necessary to include them in order
to get realistic healthy ECGs. Nevertheless,
these coupling conditions might be relevant in
some pathologies affecting the pericardial sac
and the simulations we provided to illustrate
these effects might be useful for future works.

5. At last, a sensitivity analysis has shown that the
most critical parameters of the bidomain model
are Cm, Am, the angular velocity of the acti-
vation wave and the transverse conductivities

FIGURE 27. Normalized ECG sensitivity to the activation
angular velocity.

FIGURE 28. Normalized ECG sensitivity to rl
T; rb

T and rt
T.
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ri
t and re

t. As regards the ECG sensitivity to the
ionic model parameters, we have noticed a
extreme sensitivity of the QRS-complex to
the parameter sin and a high sensitivity of the
T-wave to the parameter sclose. Moreover, we
have also observed that the ECG sensitivity to
the torso conductivity parameters is less sig-
nificant than to the heart model parameters.

To conclude, our main concern during this study
was to build a model rich enough to provide realistic
ECGs and simple enough to be easily parametrized. In
spite of its shortcomings, the proposed approach
essentially fulfills these requirements and is therefore a
good candidate to address inverse problems. This will
be investigated in future works.

APPENDIX: EXTERNAL STIMULUS

In order to initiate the spread of excitation within the
myocardium,we apply a given volume current density to
a thin subendocardial layer of the ventricles during a
small period of time tact. In the left ventricle, this thin
layer (1.6 mm) of external activation is given by

S ¼def fðx; y; zÞ 2 XH=c1 � ax2 þ by2 þ cz2 � c2g;

where a, b, c, c1 and c2 are given constants, with
c1 < c2, see Fig. 29. The source current Iapp, involved
in (2.7), is then parametrized as follows:

Iappðx; y; z; tÞ ¼ I0ðx; y; zÞvSðx; y; zÞv½0;tact�ðtÞwðx; z; tÞ;

where

I0ðx; y; zÞ ¼def iapp
c2

c2 � c1
� 1

c2 � c1
ax2 þ by2 þ cz2
� �	 


;

with iapp the amplitude of the external applied
stimulus,

vSðx; y; zÞ ¼
def 1 if ðx; y; zÞ 2 S;

0 if ðx; y; zÞ j2S;

�

v½0;tact�ðtÞ ¼
def 1 if t 2 ½0; tact�;

0 if t j2 ½0; tact�;

�

wðx; z; tÞ ¼def
1 if atan x�x0

z�z0

� �
� aðtÞ;

0 if atan x�x0
z�z0

� �
>aðtÞ;

8><
>:

the activated angle aðtÞ ¼def tp
2tact

and tact = 10ms. The
activation current in the right ventricle is built in a
similar fashion.
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