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We study the well-posedness of a coupled system of PDEs and ODEs arising in the nu-
merical simulation of electrocardiograms. It consists of a system of degenerate reaction—
diffusion equations, the so-called bidomain equations, governing the electrical activity
of the heart, and a diffusion equation governing the potential in the surrounding tissues.
Global existence of weak solutions is proved for an abstract class of ionic models includ-
ing Mitchell-Schaeffer, FitzHugh-Nagumo, Aliev—Panfilov, and McCulloch. Uniqueness is
proved in the case of the FitzHugh-Nagumo ionic model. The proof is based on a regu-

larization argument with a Faedo—-Galerkin/compactness procedure.

1 Introduction

We analyze the well-posedness of a coupled system arising in the numerical simulation
of electrocardiograms (ECG). It consists of two partial differential equations (PDEs) and a

system of ordinary differential equations (ODEs), describing the electrical activity of the
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Fig. 1. The heart and torso domains: Qg and Qr.

heart, coupled to a third PDE that describes the electrical potential of the surrounding
tissue within the torso.

We assume the cardiac tissue to be located in a domain (an open bounded subset
with locally Lipschitz continuous boundary) Qg of R3. The surrounding tissue within
the torso occupies a domain Q. We denote by X def Qu N Q1 = 9Ny the interface between
both domains, and by ey the external boundary of Qr, i.e. Text def aQr\X, see Figure 1.
At last, we define Q the global domain Qg U Q7.

A widely accepted model of the macroscopic electrical activity of the heart is
the so-called bidomain model (see, e.g. the monographs [20, 23, 24]). It consists of two

degenerate parabolic reaction—diffusion PDEs coupled to a system of ODEs:

Cmd:vm + Lion(vm, w) — divie;Vu;) = Lpp, inQu x (0, T),
Cn0:vm + Lion(vm, w) + divieVue) = Iapp, in Qg x (0, T), (1.1)
0w + glvy, w) =0, inQy x (0, T).

The two PDEs describe the dynamics of the averaged intra- and extracellular potentials u;
and u., whereas the ODE, also known as ionic model, is related to the electrical behavior
of the myocardium cells membrane, in terms of the (vector) variable w representing the
averaged ion concentrations and gating states. In (1.1), the quantity vy f U; — Ue Stands
for the transmembrane potential, Cy, is the membrane capacitance, o;, 0 are the intra-
and extracellular conductivity tensors and I,y is an external applied volume current.
The nonlinear reaction term Iy, (v, w) and the vector-valued function g(vy,, w) depend on
the ionic model under consideration (e.g. Mitchell-Schaeffer [16], FitzHugh-Nagumo [17],
or Luo-Rudy [14, 15]).
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The PDE part of (1.1) has to be completed with boundary conditions for u; and

Ue. The intracellular domain is assumed to be electrically isolated, so we prescribe

oiVui-n=0, onx,

where n stands for the outward unit normal on X. Conversely, the boundary conditions
for u, will depend on the interaction with the surrounding tissue.

The numerical simulation of the ECG signals requires a description of how the
surface potential is perturbed by the electrical activity of the heart. In general, such a

description is based on the coupling of (1.1) with a diffusion equation in Qr:

div(aTVuT) = 0, in QT, (12)

where ur stands for the torso potential and o1 for the conductivity tensor of the torso
tissue. The boundary I'ey; can be supposed to be insulated, which corresponds to the

condition

(TTVUT s nr = 0 on Fextr

where nt stands for the outward unit normal on ey;.

The coupling between (1.1) and (1.2) is operated at the heart-torso interface X.
Generally, by enforcing the continuity of potentials and currents (see e.g [11, 13, 19, 20,
24]):

Ue = UT, onx,
(1.3)
0.VUue-n=o0rVur-n, onX.

These conditions represent a perfect electrical coupling between the heart and the sur-
rounding tissue. More general coupling conditions, which take into account the impact
of the pericardium (a double-walled sac that separates the heart and the surrounding
tissue), have been reported by the authors in a recent work [4].

In summary, from (1.1), (1.2), and (1.3) we obtain the following coupled heart-
torso model (see, e.g [11, 19, 20, 24]):
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CmdUm + Lion(vm, w) — divie;Vuy) = Tapp, in Qg,
Cm0:Vm + ion(Vm, w) + div(oeVue) = Lpp, in Qm,
w4+ glvy, w) =0, in Qg,

divierVur) =0, inQrT,

(1.4)
o;iVu;-n=10, onx
o0.VUue-n=o0rVur-n, onx,
Ue = U, ONnx%,
aTVuT s N = 0, onFext.
Problem (1.4) is completed with initial conditions:
vm(0, %) = vo(x) and w(0,x) = we(x) Vxe Qu, (1.5)
and the identity
Um def Ui — Ue, InQy. (1.6)

Finally, let us notice that u, and ur are defined up to the same constant. This constant

can be fixed, for instance, by enforcing the following condition:
/ ue = 0!
Qg

Introduced in the late 70's [25], the system of Equations (1.1) can be derived

on the extracellular potential.

mathematically using homogenization techniques. Typically, by assuming that the my-
ocardium has periodic structure at the cell scale [12] (see also [7, 18]). A first well-
posedness analysis of (1.1), with Loy (vy, w) and glvn, w) given by the FitzHugh-Nagumo
ionic model [17], has been reported in [7]. The proof is based on a reformulation of (1.1)
in terms of an abstract evolutionary variational inequality. The analysis for a simpli-
fied ionic model, namely Iio, (v, w) def Lion(vm), has been addressed in [2]. In the recent
work [5], existence, uniqueness and regularity of a local, in time, solution are proved
for the bidomain model with a general ionic model, using a semi-group approach. Ex-
istence of a global, in time, solution of the bidomain problem is also proved in [5]

for a wide class of ionic models (including FitzHugh-Nagumo, Aliev-Panfilov [1], and
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McCulloch [22]) through a compactness argument. Uniqueness, however, is achieved only
for the FitzHugh-Nagumo ionic model. Finally, in [26], existence, uniqueness and some
regularity results are proved with a generalized phase-I Luo—Rudy ionic model [14].
None of the above-mentioned works consider the coupled bidomain-torso prob-
lem (1.4). The aim of this paper is to provide a well-posedness analysis of this coupled
problem. Our main result states the existence of global weak solutions for (1.4) with an
abstract class of ionic models, including FitzHugh-Nagumo [10, 17], Aliev-Panfilov [1],
Roger-McCulloch [22], and Mitchell-Schaeffer [16]. For the sake of completeness, we give

here the expressions of I, and g for these models.

e FitzHugh-Nagumo model:

Lionlv,w) =kvlv—a)lv—-1)+w, g, w) =—clyv—w). (1.7)

e Aliev-Panfilov model:

Lion(v,w) = kv(v —a)lv — 1) +vw, g, w) =¢€lyviv —1—a)+ w). (1.8)

e Roger-McCulloch model:

Lion(v,w) = kvlv —a)lv — 1) +vw, glv,w) = —€elyv—w). (1.9)

e Mitchell-Schaeffer model:

w v
Lion(v, w) = —v*(v — 1) — —,
Tin Tout
w—1 .
T ifv < Ugater (1.10)
glo,w) =y P
if v > vgate.
Tclose

Here 0 <a <1, k, €, ¥, Tin < Tout < Topen, Tclose aNd 0 < vgate < 1 are given positive con-
stants.

To the best of our knowledge, the ionic model (1.10) has not yet been considered
within a well-posedness study of the bidomain equations (1.1). Compared to models
(1.7)-(1.9), the Mitchell-Schaeffer model has different structure that makes the proof of

our results slightly more involved. As far as the ECG modeling is concerned, in [3, 4], the
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authors point out that realistic ECG signals can be obtained with this model, whereas it
seems to be not the case for standard FitzHugh-Nagumo type models (1.7).

The remainder of the paper is organized as follows. In the next section, we
state our main existence result for problem (1.4), under general assumptions on the
ionic model. In Section 3, we provide the proof of this result. We use a regularization
argument and a standard Faedo-Galerkin/compactness procedure based on a specific

spectral basis in Q. Uniqueness is proved for the FitzHugh-Nagumo ionic model.

2 Main Result

We assume that the conductivities of the intracellular, extracellular, and thoracic media
0i, 0¢, o7 € [L®(Qy)1®*® are symmetric and uniformly positive definite, i.e. there exist
a; > 0, e > 0, and ap > 0 such that Vx € R3, V& € R?,

ET0i(0E > ai|E]?, ET0.(E > aelél?, ETor(XE > arlE]? (2.11)

. def .
Moreover, we shall use the notation ¢« = min{oe, o).

For the reaction terms we consider two kinds of (two-variable) ionic models:

e I1: Generalized FitzHugh-Nagumo models, where functions Ij,, and g are

given by

Iion ’ = !
(w,w) = filv) + fl)w (2.12)

glv,w) =g1(v) + aw.

Here, fi, f2, and g; are given real functions and ¢, is a real constant.
e 12: A regularized version of the Mitchell-Schaeffer model (see, e.g. [9]), for
which the functions I, and g are given by:
v

w
Lionlv, w) = — filv) — ,
Tin Tout

(2.13)

1 close = ‘open
glo, w) = (——— + IR () ) — g (v),

Tclose Tclose Topen

where f] is a real function given by

filv) =v?(w - 1), (2.14)
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the function h, is given by

hwuo=:%[1—wanh(3ilﬂﬁf)}, (2.15)

Ngate

and i, Tout, Topens Tcloser Vgates 1gate Ar€ positive constants.
In what follows we will consider the following two problems:

e PI1: System (1.4) with the ionic model (I1) given by (2.12).
e P2: System (1.4) with the ionic model (I2) given by (2.13)-(2.15).

In order to analyze the well-posedness of these problems, we shall make use of the

following assumptions on the behavior of the reaction terms.

e Al: We assume that fi, f> and g; belong to C!(R) and that, Vv € R,

| AW < e +aslvl?,
f2v) = ¢y + csv, (2.16)

lg1 ()| < ¢ + orlvl?,

with {ci}zzz given real constants and ¢, c3, ¢s, ¢; are positives.

For any v e R,
fil)v > alv* = blv|?, (2.17)

with a > 0 and b > 0 given constants.
e A2:(2.16); and (2.17).

The next assumption will be also used in order to prove uniqueness of the solution

of problem P1.

e A3:Forall 4 > 0, we introduce F, as

F,:R? — R?

(v, w) = (hion(v, w), glv, w)),
and Q, as:

1
Q,(z) def > (VF.(2)+ VF,(2)"), VzeR
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In addition, we assume that there exist uo > 0 and a constant Cion < 0 such

that the eigenvalues A ,,,(2) < A3,,(2) of Q,,(2), satisfy

Cion < M yo(2) < Az p(2), VzeR2 (2.18)

Remark 2.1. One can check that models (1.7)-(1.9) enter the general framework (2.12)
and satisfy the assumption Al and the model given by (2.13)-(2.15) satisfies assumption
A2. In addition, A3 holds true for the FitzHugh-Nagumo model. We refer to [5], for the
details. O

In what follows, we shall make use of the following function spaces:

For times T, t and t, we introduce the cylindrical time-space domains Qr def (0, T) x Qn,
Q; def (0,2) x Qg, Oy, def (0, tn) x Qg, and we define u as the extracellular cardiac potential

in Qg, and the thoracic potential in Qr, i.e.:

u =

def |Ue In Qg,
ur in QT.

From the first coupling condition in (1.3), it follows that u € H'(Q2) provided that u. €
H'(Qu) and ur € H'(Q7). Similarly, we define the global conductivity tensor o € [L>(2)]3*3
as
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Definition 2.1. A weak solution of problem P1 is a quadruplet of functions (vy, u;, u, w)

with the regularity

vm € L®(0, T; H(Qy) N H' (0, T; L3(Qn)),

(2.19)
uelL®0,T;V), weHY0,T;L*Qn),
and satisfying (1.5), (1.6) and

Cm/ 3tvm¢i+/ UiVui-V¢i+/ Iion(vm,w)¢i=f Tapp®i, (2.20)

Qp Qn Qg Qu
Cm/ atvmw - / oVu- VW +/ Iion(Umr U))w = / Iappwr (221)

Qu Q Qu Qy
9w + glvy, w) = 0. (2.22)

for all (¢, v,0) € H'(Qu) x V x L?(Qy). Equations (2.20) and (2.21) holds in D’'(0, T) and
Equation (2.22) holds almost everywhere. On the other hand, a weak solution of problem
P2 is a quadruplet (u;, u, vy, w) satisfying (2.19), (1.5), (1.6), (2.20)—(2.21) and

w e W0, T, L®(Qu)), 8w+ glvm, w) =0,a.e. on Qr.
O

Remark 2.2. Since w € H!(0, T; L?(Qg)) it follows that w € C°(0, T; L?(Qy)), which gives
a sense to the initial data of w. In the same manner, the initial condition on v, makes

sense. O

The next theorem provides the main result of this paper, it states the existence

of solution for problems P1 and P2.

Theorem 2.2. Let T > 0, Lyp € L?(Qr), 05,06 € [L™®(Qg)**® symmetric and satisfying
(2.11), wo € L%(Qy) and vy € H'(Qy) be given data.

e If Al holds, then problem P1 has a weak solution in the sense of Definition
2.1. Moreover, if assumption A3 holds true, the solution is unique.
e If A2 holds and wg € L*°(Qg) with a positive lower bound r > 0, such that

r<wg=< 1 in QH, (223)

then, problem P2 has a weak solution in the sense of Definition 2.1. O

The next section is fully devoted to the proof of this theorem.
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3 Proof of the Main Result

Two main issues arise in the analysis of problem (1.4). First, the nonlinear reaction—
diffusion equations (1.4);, are degenerate in time. And secondly, we have a coupling
with a diffusion equation through the interface X. The first issue is overcome here by
adding a couple of regularization terms, making bidomain equations parabolic. The
method we propose simplifies the approach used in [2] by merging regularization and
approximation of the solution . Then, the resulting regularized system can be analyzed
by standard arguments, namely, through a Faedo-Galerkin/compactness procedure and
a specific treatment of the nonlinear terms. On the other hand, the second matter can be
handled through a specific definition of the Galerkin basis.

In paragraph 3.1, regularization and Faedo-Galerkin techniques are merged by
introducing a regularized problem in finite dimension . In the next paragraph, existence
of solution for this problem is proved. In paragraph 3.3, energy estimates are derived,
independent of the regularization parameter % Existence of solution for the continuous
problem is addressed in Section 3.4 whereas, in 3.5, uniqueness is proved for problem

P1, under the additional assumption A3.

3.1 Aregularized problem in finite dimension

Let {hg}ken+ be a Hilbert basis of V4, { fx}ken+ be a Hilbert basis of V. and {gx}ren+ a Hilbert
basis of Vgr; see, e.g. [8]. We assume that these basis functions are (sufficiently) smooth
and that {hy}rcn- is an orthogonal basis in L2(Qy) (see, e.g. [21] page 268). We introduce a
Galerkin basis of V by defining, for all k € N*, fi € H'(Q) as an extension of f; in H'(),
given by an arbitrary continuous extension operator. We also extend, for all k € N*, gx by
Jk € HY() such that gi = 0 in Q. One can check straightforwardly that {e;}rcn-, defined
as, ex_1 = fi, ex =0k, Yk eN* isa Galerkin basis of V.

Finally, for all n € N*, we can define the finite-dimensional spaces Vi,, Ven, Vrn

and V, generated, respectively, by {he}}_, { fi}i_;, {gx}F-; and {ek}iil, i.e

def def
Vi,n =< {hk}zzl >, Ve,n =< {ﬁC}Z:l >

def def 2
Vin =< {gk}zzl >, T, =< {ek}k11 > .

Hence, we can introduce, for each n € N*, the following two discrete problems

P1, and P2,, associated with problems P1 and P2, respectively:
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e Pl,: Find (ui,, un) € C0,T; Vi x V), wy, € CO, T; Vi) such that, for v, =

Uin — Un g, and for all (h, e,0) € Vi, x T, x V;, we have,

1
Cm/ o:vnh + —/ atui’nh +/ oiVu;, - Vh
QH n QH QH

+ / Lion(vn, wp)h = Iapphr
Qy

Qg

1
Cm/ 0t vne — —/ 8tune—/aVun-Ve (3.24)
Qu nJjg Q
+/ Lion(vp, wn)e:/ Iyppe,
QH QH

f Bywnf + / Glom, W) =0,
o o

. def cp s .
with v, = Ui — Ung, and verifying the initial conditions

vn(0) =von,  Uin(0) = Uion, INQm;
(3.25)
un(O) = Uo,n in Q, wn(O) = Wo,n, in QH,

Here, von, wo,, are suitable approximations of vy and wo in Vi, and uion, Uon
are auxiliary initial conditions to be specified later on.

e P2,: Find (ui,, un) € CHO, T; Vi, x V4) and w, € C'(0, T, L®(Ry)) such that, for
Vp = Ujn — Un g, the triplet (v, Ui, uy) satisfy (3.24); »-(3.25); and

atwn +g(vn, wn) = 0, a.e. in OT:
(3.26)
wn(0) = wo, a.e.in Q.

The (auxiliary) initial conditions for u;, and u,, needed by the two problems
below, are defined by introducing two arbitrary functions u;o € H!(Qg) and ug € V such
that vop = uj0 — Uo in Qg. Then, for n € N*, we define (uio,n, Uon, Wor) as the orthogonal
projections, on Vi, x V, X Vi, of (Ui, Up, wo). Clearly, by construction of these sequences,

we have
(Vo,ns Ui,0,ns Uo,ns Wo,n) —> (Vo, Uio, Uo, Wo), (3.27)

in V2 x V x L%(Qg).
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3.2 Local existence of the discretized solution

Lemma 3.1. Suppose that there exists Cq such that

lwionll g + ltonllae + lwonllzzey < Co- (3.28)

For all n € N* there exists a positive time 0 < t,, < T which only depends on Cy such that

problems P1, and P2, admit a unique solution over the time interval [0, ,]. O

Proof. For the sake of conciseness we only give here the details of the proof for problem
P1,, the proof for problem P2, follows with minor modifications. Since {h;}1<;<n» and

{er}1<1<2n are basis of Vi, and V,, respectively, we can write

2n n

uinlt) =Y cut)h, unlt) =) altle, walt)=>)_ cunlt)h,

=1 =1 =1

(3.29)
n 2n n
Uion = Zcﬂ,hl, Uon = ZCIOGI Wo,n = chv,lhl'

=1 =1 =1

Thus, introducing the notations

def def 2 def
¢ = {aihi, c={a)il, cw = {Cwili=1/

L, P, & D,

it follows that problem P1,, is equivalent to the following nonlinear system of ordinary
differential equations (ODE)

Gi(t,ci, ¢ cw) ai(0) d
(tia,cew) |+ | cO) | =] . (3.30)
GW(tl Cil CI CW) CVV(O) Csv

=
gQ aQ Q.
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Here, the mass matrix M € R*4" ig given by

(Cm+ LMy, :  —CmMy, 0
def 1
M = _CmMVie CmMVB + EMVHT 0 12
L 0 0 My, |

with My, € RV, My, € R™?" and My,, My,, € R?"*2"

def def
My, = (/ hkhl> . My, = (/ hkel) ,
Qu 1<kl<n Qu 1<k<n,1<lI<2n

def def
My, = ( ekel> , My, = ( ekel) .
Qx 1<kl<2n Q 1<kl<2n

On the other hand, from the notations

def def def
Gi S {Gixliy, G S (G, Guw S (Guiliey,

the right-hand side of (3.30) is given by

def
Giklt,c,c o) = —/

Qn

oiVuin - Vhe — / Lion (v, wp)hg + f Iapphkr

Qn Qy

foralll <k <mn,

Gk(tr Ci/ Cr CKN) déf _/

oVu, - Ve +/ Tion(vn, wy)ex — f Tapper,
Q

Qpy Qy

for all 1 < k < 2n, and finally,

Gkt G, ) 22 — / (s wahi,

Qg

foralll <k <n.

13
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According to Lemma 3.2, given below, the mass matrix M is positive definite and hence
invertible and, on the other hand, the right-hand side of (3.30) is a C! function with
respect to the arguments ¢, ¢, and ¢,. Thus, thanks to Cauchy-Lipschitz theorem (we
refer, for instance, to [6]), we obtain the existence of a local solution for the ODE system
(3.30) defined on [0, t,] where t, only depends on Cq (introduced in (3.28)). This completes
the proof. |

Lemma 3.2. For all n € N*, the matrix M is positive definite. O

1 .
Proof. We can decompose M as M = C, N + ED' with

I My, 0 o |
p¥ 0 My,, o |,
_....6 .............. (; .......... n MV_
and
I My, —My, o |
N My T My, 0
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Since the matrices My, My,, and My, are mass matrices, we obtain that the block-diagonal

T
matrix D is positive definite. On the other hand, for each [Ci c Cw] € R*" we have

T
G G n
c| Nlc|=) (/ Gi G iy — 2/ GiiCok—1hi fie + / Czl—lczk—lﬁﬁc>
1k=1 Qp Qg Qn
Cw Cw '
n 2
= Z (ciphi — cu-1 fi)
11 L2(Qm)
z Ol
so that N is positive. It then follows that M is positive definite. |

Remark 3.1. The above lemma points out the role of the regularization term %D. It
allows to obtain a matrix M in (3.30) which is nonsingular, so that the resulting system

of ODE is nondegenerate. O

3.3 Energy estimates

In the next lemma, we state some uniform estimates (with respect to n) of the solution of
problems P1, and P2,. We also provide similar estimates for the time derivative, which
will be useful for the passage to the limit. For the sake of clarity, in what follows, ¢ > 0
stands for a generic constant, which depends on T, on the initial conditions, and on the

physical parameters, but which is independent of n.

Lemma 3.3. Let uip € H(Qn), uo € V, wo € L*(Qy) and Iy, € L%(Qr) be given data and
let (uin, Un, wy) be a solution of P1,, defined on [0, T'] for 0 < T’ < T. Assume that Al holds

true. Then, for v, = ujn — Un,q, and for all n € N* and ¢ € [0, T'], we have

1
lvallz=,t;2@u) + Vnllzea) + NG (Iin ll 20,2200 + IUnllzx0,6;220)
+ IVUinlzzia) + IVUnlzzgooxe < ¢
) (3.31)
19t vnllzz(@) + lvnll<o,tH Q) + 7n (I10¢ uinllz2(0,) + 19 Unllz2(0,0x2)

+ IVuinliz=o,t;c2@u) + 1 VUnllzeo,c2) < C
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and

lwrllzeo,502@u) < € 10twnllzz,) < C. (3.32)

If A2 is satisfied and wg € L*°(Q2g) with (2.23), there exists a positive constant wy;y
(independent of T') such that a solution (u;,, un, wy) of P2, defined on [0, T'] for T/ > 0
satisfies (3.31) and, for all ¢ € [0, T"]

lwnllwie(os,L@m) <€  Wmin <wp <1, inQp. (3.33)
O
Proof. We start by proving the estimates for problem P1,. Taking h = u;,, e = —uy,,

0 = wy in (3.24) and using the uniform coercivity of the conductivity tensors (2.11), we

obtain:

1 d 2 2 1 2 2
2dt ||wn||L2(QH) + Cm”UTl”LZ(QH) + n (”ui,n”Lz(QH) + ||un||L2(Q))

2 2
i VUi 220y + @V it |22y + f Ton (v, wa)vn
Q

H

+/ gvn, wyp)wy, S/ Tappvn. (3.34)
o Qu
From assumption Al, we get

Tion (v, w)v + glv, ww > alv* — (csv]* + colw|?) — cio,

with ¢, cg,c10 > 0. Thus, inserting this expression in (3.34) and using the Cauchy-

Schwarz's inequality, it follows that

1d 2 2 1 2 2
2dt ”wn”LZ(QH) + Cm”UnHLZ(QH) + n (”ui,n”Lz(QH) + ”un”LZ(Q))
2 2 4
+aill Vuin 7z, + 2 Vunllzzg + allvallzag,)
1 2 2 1 2
=|\c+ 2 ||Un||L2(QH) + CQHwn”LZ(QH) + CiolQ2m| + E”IappHLZ(QH)'
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Therefore, integrating over (0, t), with ¢t € [0, T’], we have

1
2 2 2 2
”wn”LZ(QH) + Cm”UrL”LZ(QH) + E (”ui,n”LZ(QH) + ”un”LZ(Q))

2 2 4
+ai||Vui,n||L2(Qt) +alVuy ||L2(Q><(0’t)) + a”vn”m(at)

t 1
2 2 2
< Cf (IlvnllemH) + llwnlfey) + 10l T + E”Iapp”LZ(aT)
0

2 2 2 2
+ llwo,nllz2(qy + Cmllvonllzz g, + (”ui,O,n”LZ(QH) + ||u0,n||L2(Q)) '

n

for all t € [0, T']. Estimates (3.31); and (3.32); follow by applying Gronwall lemma and
using the fact that, from (3.27),

2 2 1 2 2
”wO,n”LZ(QH) + Cm”UO,n”LZ(QH) + E (”ui,O,n”LZ(QH) + ”uO,n”Lz(Q)) '

is uniformly bounded with respect to n.

For the estimate of the time derivative, following [2], we notice that

fl(v)a,m=i H(v), H(v)déff fi. (3.35)
0

o dt Jo,

On the other hand, taking h = 9;ui, e = d;u, and 6 = d;wy, in (3.24) and integrating over
(0,t), with t € [0, T'], yield

1
2 2 2 2
10t wnll72(q,) + Cmlldtvnllzzq,) + n (”atui,n”LZ(Qt) + ||atun||LZ(0’t;L2(Q)))

% 2 o 2
+ E”Vui,n”Lz(QH) + E”Vun”LZ(Q)

1 1
= 2 / 0iVUuion - VUuion + 2 / aVugn - Vuo, + H(vo,n)
Q

Qg

Qy
¢ ¢
— H(vy,) + / / Lappdsvn — / (folvp)wnds vy + gluy, wy) o wy,). (3.36)
Qn 0 Qy 0 Qu

It remains now to estimate the right-hand side of this expression. The first two terms can
be bounded using (3.27). For the third term, we use (2.16);, the continuous embedding of
H'(Qg) into L*(Qg) and (3.27) to obtain

/ | Hlvo,n)| = / / " Alods
Qp Qg 1J/0

< f c(vg,+1) <c
Qp
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For the fourth term, according to assumption (2.17), we have f(v)v+ bv? > 0. In other
words, fi(v) 4+ bv >0 for v > 0, and fi(v) + bv < 0 for v < 0. As a result, integrating over

(0,v) yields

—H()

IA

gvz (3.37)

On the other hand, the fifth term can be controlled using the Cauchy-Schwarz inequality.

In summary, from (3.36) and (2.12), we get

1
2 m 2 2
”atwn”LZ(Qt) + 7||atvn||L2(Qt) + ﬁ”atui,n”Lz(at)

1 2 o 2 o 2
+ ﬁnatun”LZ(O,t;LZ(Qn + Envui,n”y(g}l) + Euvun”Lz(g)
) (3.38)
<c+ f” app”Lz Qt)‘l' ||Un||L2 (Qm)

t
a / Jalvn)wndrvn — / / 91 (vn)dewy — / / —8tw
0 Qu Qu o

For the last three terms of the right-hand side, we proceed as follows. First, using (2.16),

and Young's inequality, we notice that

t
= ’/ / C40; Vp Wy, + C5U, 0t VpWy
0 Qn

m 2 2
T”atvnnLZ(Qt) + C”wn”LZ(Qt) +

t
’ / Solvp)wydsv,
0 Qn

A

¢
Cs
—// wnatuﬁ
2 Jo Jau

In addition, integration by parts in the last term with Young’s inequality and Cauchy-

| [ [ o

C||Un||L4 Q) + — ||8twn”L2(Qt + C(”UO n||L4(QH) + ||w0n||L2(QH))

Schwarz inequality yields

t
Cs

—// wnatvrzl
2 Jo Jag

+ ﬂ \wn(t)vfz(t) - wO,nvé,ni
Qy

| /\

IA

+c||wn(t)||LzmH>||vn< T

where the last term can be estimated by combining Hélder's inequality and the continu-

ous embedding of H'(Qg) in L8(Qy), namely

1 1 3
9 1 1 3
||Un(t)||L4(QH) = ||Un(t)||22(QH)”vn(t)”Le Q) = < Cllvn(t )||22(QH)||vn(t)||IZ.II(QH)'
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Finally, using (2.16)3 we have,

1
g1(vp)orwn| < C(|QH|t + ”vn”}}/l(at)) + Z”atwn”%qat)r

Qy
and

|Cl|

|c1] 9 |c1 ]

_at = THwn(t)”LZ(QH) + = ||w0n||L2(QH)

[ wzer— [ i,
Qu (937

As a result, inserting these last estimates in (3.38), we obtain

Qy

1 2 Cm 2 1 2 1 9
E”atwn”Lz(Ot) + T”atvrz”y(at) + E”atui,n”y(at) + ﬁ”atun”LZ(o,t;LZ(Q))

vy 112 Y Vw2, < b Lo 112 (t)12
+ ul,n”LZ(QH) + < un”LZ(Q) =c+ I app”LZ(Qt) + cllvn ||L2(QH)
2 2 2Cn
2 4 4 2
+cllwnllzzq,) + clvnllzsq, + C(||U0,n||L4(QH) + ||w0,n||L2(QH))

1 3
+ Cllwn(®) 220 190 O 221 100 O] 711,y + 1]t + Cllwn @220, (3.39)

forallt € [0, T].
Therefore, using (3.27), the previous estimates (3.31);, (3.32);, and since T" < T,

inequality (3.39) reduces to

Cc 1 1
2 m 2 2 2
2 ”atwn”LZ(Qt) 72 ”atvrz”y(at) _”atui,n”Lz(Qt) _||3tun||L2(0't;L2(Q))

o 2 3
IVl = e (1+ 10l Fg,))

041 2
+ Envui,n”LZ(QH) + 2

for all ¢ € [0, T']. In particular, using estimates (3.31);, we obtain
Lo )
5 mint, a)vn Ol g, = ¢ (1+ 1vnlb)l g, )

so that v, is uniformly bounded in L*(0, T'; H!(Qy)). Hence, we obtain the desired esti-
mates (3.31), and (3.32),.
Now, we consider problem P2,, by proving the estimate (3.33). From (3.26);

it follows that 9;w, = —g(v,, w,) and, on the other hand, according to (2.15), we have
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0 < hy < 1. Thus, from (2.13); we have, a.e. in [0, T'],

1 Tclose — To
pen
Otwy > — wn( + hoo(vn)>:
Tclose Tclose Topen

(3.40)

1 Tclose — Topen
=< (1= wp) (—— + P2 holvn) ),
Tclose Tclose Topen

which combined with Gronwall lemma yields

t
1 Tclose — Topen
Wy, > wo exp | — + hoolvn) ) |,
0 \Tclose Tclose Topen

! 1 Tclose — Topen
wyp <1 —(1—wpexp|— + hoolvn) ) |-
0 \Tclose Tclose Topen

Using (2.23), we then obtain that

def .
Wmin = rexp( ) <w, <1, a.e inQr.

Topen

On the other hand, combining this estimate with (3.40), we get

1 .
< diwy < , a.e.inQy.
Topen Topen

which completes the proof of (3.33). [ |

Finally, the energy estimates (3.31); are obtained in a standard fashion by taking

h = u;, and e = —uy, in (3.24), 2, which yields
li C 2 l 12 2 Vw12
o dt mllVnllzzqy + n (“ul,n”LZ(QH) + ||un||L2(Q)) + il Vuinllzzg,)

@ Vil 2 + / Lon(vn, wavn < / Lyt (3.41)
Q

H QH

Conversely, assumption (2.17) and estimate (3.33) lead to

a b 1
Tion(v, wv > _wmin|v|4 - <_ + _> |U|2r
i Tout

in in
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so that, from (3.41), we have

1d [, o 1 ,
ot m””n”Lz(QH) + n (”ul,n”LZ(QH) + ||un||L2(Q))

a
2 2 4
+ai||Vui,n||L2(QH) + 06||Vun||Lz(Q) + o wminllvn||L4(QH)
in

b 1 1 2 1 2
<|—+ + E ||Un||L2(QH) + E”Iapp”Lz(QH)-

Tin Tout

We then obtain the energy estimate (3.31)); by applying Gronwall lemma.
For the estimate on the time derivatives, we take h = d;u;, and e = 9;u,, in (3.24)
and we integrate over (0, t), with t € [0, T']. Using Cauchy-Schwarz and Young's inequal-

ities, we obtain

m 2 1 2 2 %i
T”atvrz”LZ(Qt) + n ||8tui,n”L2(at) + ”atun”LZ(O,t;LZ(Q)) + Envui,n”Lz(QH)

o 1
2 2 2
+ E”VUnHLZ(Q) = C(||Vui,0,n”L2(QH) + ”VuO,n”LZ(Q)) + 20 ”Iapp”LZ(Qt)
m

1 1t
+ 2—”1)"”%2(00 - _/ / Wn fi (V)0 vy (3.42)
ToutCm Tin Jo Jou

On the other hand, using the same notation in (3.35) and the fact that f] satisfies (2.16);,
the same argument is used to obtain the inequality (3.37). Integrating by parts the last

term of (3.42), we have

t t
_f / Wy, fi(vg) 0o, = —/ / Wy 0t H (vy,)
0 JQg 0 JQg

t
—_ / wnHlvn) + / woH(vo,) + / / 0w H(vy)
Qu Qu 0 Qp

2
< cllwn (&)l 2@ lvn ) 7210y
4
+ cllwoll L>(@g) (1 + ||U0,n||L4(QH))

4
+ cllwnlliman (1+ Ivnlfua,)

Therefore, inserting this estimate in (3.42), using (3.27) and the previous estimates (3.31);

and (3.33), we obtain (3.31),, which completes the proof of Lemma 3.3. [ |
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3.4 Weak solution of the bidomain-torso problem

First of all, we notice that energy estimates allow to extend the existence time of our
discrete solution (u; , Un, wy). Indeed, according to Lemma 3.3, the solution satisfies, for

all t € [0, T'] where T’ is the existence time,
lwin ()l a1 @) + Un @) 1) + lwn(E)]lL20m < C1.

Applying iteratively Lemma 3.1, we thus obtain the existence of solution up to an arbi-
trary time T.

We want now to pass to the limit when n goes to infinity. We first consider
problem P1. Let us multiply (3.24) by a function « € D(0, T) and integrate between 0 and

T. For all k < n, we have

T
Cm/ / a dvphy + — //aatulnhk+/ / aoiVuin - Vhg
0 JQg Qg Qg
T
“l‘/ / aIlonUnrwnhk—/ / o51’a\pphk/
0 Qn

(3.43)

T 1 (T T
Cmf / aatvnek——/ /aatunek—/ faaVun~Vek
0 JQu nJjo Ja 0o Ja
T T
—|—f / a Tion (v, wy)ex 2/ / a Ippex
0 Qg 0 Qp

(3.44)

T T
/ / o 0;wy hy +/ / o glvy, wy)hy = 0. (3.45)
0 Qu 0 Qp

From Lemma 3.3, it follows that there exists four functions u € L0, T; V), vy €
L>(0, T; HY(Qg)) N L*(Qr) N HY(O, T; L3(Qm)), u; € L>°(0, T; H(Qy)) and w € H'(0, T; L2(Qg))
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such that, up to extracted subsequences, we have:

u, — uin L*(0, T; V) weak x*,
vy — v in L®(0, T; HY(Qg)) weak x,
v, = vy weakly in L*(Qr),
(3.46)
v, — Uy weakly in H(0, T; L?(Qm)),

Uin — uj in L™(0, T; H'(Qn)) weak x,

w, — w weakly in H'(0, T; L%(Qg)).

1
T
L>*(0, T; L%*(Qy)) and L*(0, T; L%(R)), respectively. Thus, for all k € N* and « € D(0, T), we

have

Moreover, according to Lemma 3.3, we also notice that —=u;,, and \/Lﬁun are bounded in

1 (T I
lim —/ / o Btui,nhk =0, lim —/ / o 8tunek =0.
n—-+oo N 0 Qi n—+oo n 0 Q

Let us consider now the nonlinear terms in (3.43)-(3.45). Since {v,} is bounded in
L%(0, T; H(Qg)) N HY(0, T; L?(Qy)), we have that {v,,} is bounded in H!(Qr). Hence, thanks
to the compact embedding of H'(Qr) in L3(Q7), the sequence {v,} strongly converges to
vy in L3(Qy). In addition, using the Lebesgue’s dominated convergence theorem, we de-
duce that there exists a positive function V € L!(Qr) such that, up to extraction, vfl <V
and that v, - vy a.e. in Qr. Thus, from (2.16); and using once again the Lebesgue’s

dominated convergence theorem, it follows that { fi(v,)} strongly converges to fi(vy) in

L1(Q7). As a result,
T T
lim / / aﬁ(vn)hk=f / o filvm)hg.
n—+o0o 0 Qu 0 Qn

On the other hand, since {wy,} is bounded in L?(Q7) and {v,} strongly converges to vy in

L%(Q7), we have

T T
lim / / a folvy)wphg =/ / a folvm)why.
n—+o0o 0 Qu 0 Qu

Thus, in summary,

T T
lim / / o Iion(Un, wn)hk = / / o Iion(vm/ w)hk-
n—+o00 0 Qu 0 Qu
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Similar arguments allow us to prove that

T T
lim / / ag(vn)hsz / o glvg) hg.
n—>+o Jo  Joy 0 Jog

We can then pass to the limit in n in (3.43)—(3.45), yielding

T T
Cm/ / a Oy vmhg —i—/ / aoiVu;- Vhg
0 QH 0 QH

r r (3.47)
+ / / o Tion(vm, whg = / / (%4 Iapphk/
0 Qn 0 Qy
T T
Cm/ / aatvmek—/ /aaVu-Vek
0 Qy 0 Q
. . (3.48)
+ / / o Tion(vm, wlex = / / (o4 Iappek:
0 Qy 0 Qg
T
/ / a s whg + @ glvy, whg =0, (3.49)
0 Qn

for all k € N* and o € D(0, T). We obtain (2.20)-(2.22) from the density properties of the
spaces spanned by {h}ren: and {ex }xens-

Finally, it only remains to be proved that vy, and w satisfy the initial conditions
(1.5). Since (v,) weakly converges to vy, in H'(0, T; L?(Qg)), (v,) strongly converges to vy
in C(0, T; H '(Qy)) for instance. This allows to assert that vy(0) = vy in Qg since, by
construction, v,(0) — vg in L?(Qgy). The same argument holds for w.

For problem P2, the arguments of passing to the limit can be adapted without
major modifications. For the nonlinear terms, we can (as previously) prove that {v,}
strongly converges to vy in L3(Qg). Thus fi(v,) strongly converges to fi(vy) in L(Qr).

Since
w, — w in L*(Qr) weak *,

this allows us to prove that

T T
lim f / o Iion(Un, wn)hk = / / o Iion(vmr w)hk-
n—-+o0o 0 Qu 0 Qu
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Moreover, since Ay (vy) = hoolvm) a.e. in Qr and {h«(vy,)} is bounded in L*°(Q7), {hso(vy)}
strongly converges in L2?(Qr) to hy(vy). Thus we can also pass to the limit in Equation
(3.26). This allows us to obtain a weak solution of P2 as defined by Definition 2.1.

3.5 Uniqueness of the weak solution

In this paragraph, we prove the uniqueness of weak solution for problem P1, under the
additional assumption A3. This is a direct consequence of the following comparison

Lemma.

Lemma 3.4. Assume that assumption A3 holds and that
(vm,ll Ui, U, U)]), (vm,ZI Uj2, U2, 'I,UZ),

are two weak solutions of problem P1 corresponding, respectively, to the initial data
(v1,0, wi,0) and (v, wa), and right-hand sides I.pp,1 and Iupp2. For all t € (0, T), there
holds

[01(8) = v2() 132, + w1 (8) — w2 )22,
2 2 2
< exp (K;t) KZ(”UI,O - U2,0||L2(QH) + w0 — w2,0|LZ(QH) + app,1 — Iapp,2||L2(at))'

with K, K, > 0 positive constants only depending on Cy,, io, and Cion. O

Proof. The proof follows the argument provided in [5] for the isolated bidomain equa-
tions. According to Definition 2.1, we have, for all ¢; € L2(0, T; H}(Qg)), ¥ € L?(0, T; V) and
6 € L*(0, T; L*(Qn),

Cm/ / Bt(vl — VU2 ¢1 / / Vull — Vul 2) V¢1
Qy Qg

+/ (Lion(v1, w1) — Lion(va, wo))gi = / / (Iappl app2 )i,

Cm/ / 8t(v1 —Uz)d/ / /G(Vul Vuz) VI//
Qg
/ (Ilon(vlr w1) — Lion(vz, wa) lﬂ / / appl app2)¢
Qp

/ / 0 (w1 — w2)0 +/ f glvy, w1) — glvz, wz))0 = 0.
QH QH
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For u > 0, we take in this expression ¢; = pul(ui1 — uiz), ¥ = —ulu; — uz) and 6 = w; — ws.

Thus, adding the resulting equalities, we have

uC 1
5 1018) = 2@l 20y + S llwr(0) — w2012,
i (@l Vi = w22, + oV — w)lEug,0,0)
¢
+ M/ / (Tion(vy, wy) — Lion(vz, wa))(vy — v2)
0 Jou
t (3.50)
+ f (glvy, w1) — glvz, w2)lw; — wz)
0 Jog
uC 1
< 2m lvio — v2,0“%2(QH) + §||w1,o - w2,0||%2(QH)
2 2 1 2
+ ?”Iapp,l - Iapp,2||L2(Qt) + E”Ul - v2||L2(Ot)'
Let no > 0 be the parameter provided by assumption A3. We define
def
®lon, w1, v2,w2) [ pollinlon, w) = Tanloa, wlon — v2)
a (3.51)

+ / (glvy, w1) — glvg, w2)l(wy — wy),
Qp

Denoting z def (v, w) and using A3, we have

O (vy, wy, vz, w2) = Plz;,23) = / (Fuo(2z1) — Fuy(22)) - (21 — 22).
Qn

Since F,, is continuously differentiable, a Taylor expansion with integral remainder

yields

1
Fu(z1) — Fy(z2) = / VFM0(§Z1 + 1 - é)zz) (zy —z)dE, Vzi,z € R
0

Inserting this expression in (3.51) and using the assumed spectral bound (2.18), there

follows

1
@(zl,z2)=/ / (21— 22) - VE, (E71 + (1 — £)25) - (21 — 25) d&
0 Qn

1
2
= Cion/ lzy — Zz”LZ(QH) d%'
0

2 2
= Cion(”UI - v2||L2(QH) + lwy — w2||L2(QH))-
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Therefore, from (3.50) with u = ug, we have

uoC 1
5 01(0) = 02020, + 5 w1 (8) = wa ()l a0y
uC 1 2
= 2m lvio — v2,0||%2(QH) + EHWI,O - w2,0||%2(QH) + ?”Iapp,l - Iapp,2||%2(at) (3.52)
1 2 2
+ Ca Cion| llv1 — U2”L2(a,) + [Cionlllw1 — w2||L2(at)-
We conclude the proof using Gronwall Lemma. |
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